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For Instructors

Features of the text. The book is organized into Modules. You can think of a module
as a chapter in a textbook.

In a TBIL course, each module starts with a Readiness Assurance Process to check
understanding of and and solidify prerequisite knowledge (from other courses or previous
modules) that will be needed in the upcoming module. The front page for each module pro-
vides a list of these Readiness Assurance outcomes, along with study resources and exercise
students can use to refresh themselve on this prerequisite knowledge. Readiness Assurance
Tests that assess this knowledge are available as part of the TBIL Resource Libary (see TBIL
Resource Library). Join the TBIL community (see Community and Support) to gain access
to these.

Within each module there is a varying amount of sections, one per learning outcome. Each
section is designed to guide students into being able to demonstrate their understanding of
that specific outcome. The learning outcome can be tested with a CheckIt Exercise, which
are linked at the end of each section.

Within each section, students engage in Activities, which are interpersed with definitions,
theorems, remarks, examples, etc. as needed to guide the learning process. The activities
start in an exploratory way then building the concepts on the results of this exploration.
The concepts are then practiced with less scaffolding to build fluency. Finally, towards the
end of the section we connect the concepts and extend them to new settings.

Each section/learning outcome is designed with an exercise, a specific set of tasks, that
the students need to be able to solve to demonstrate their competency. Virtually limitless
randomized versions of the exercise can be generated via CheckIt to build a problem bank
and allow for reassessment.

Community and Support. If you are adopting this text in your class, please fill out this
short form3 so we can track usage, let you know about updates, etc.

Implementation of these materials is supported by a TBIL community of practice which
offers both formal and informal professional devlopmentopportunities. The best way to
connect with us is on our Slack workspace4.

These materials are a product of our TBIL community. Feedback and suggestions
3forms.gle/Ktfbma6iBn2gN1W78
4chat.tbil.org/

v
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http://chat.tbil.org/


vi

for improvements are most welcome, either through our GitHub Repository5 or the Slack
workspace6.

5github.com/TeamBasedInquiryLearning/library
6chat.tbil.org/

https://github.com/TeamBasedInquiryLearning/library
http://chat.tbil.org/
http://chat.tbil.org/


Video Resources

Videos are available at the end of each section. A complete playlist of videos aligned with
this text is available on YouTube7.

7www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj

vii

https://www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj


Contents

For Instructors v

Video Resources vii

1 Systems of Linear Equations (LE) 1

1.1 Linear Systems, Vector Equations, and Augmented Matrices (LE1) . . . . . 2
1.2 Row Reduction of Matrices (LE2) . . . . . . . . . . . . . . . . . . . 10
1.3 Counting Solutions for Linear Systems (LE3) . . . . . . . . . . . . . . 18
1.4 Linear Systems with Infinitely-Many Solutions (LE4) . . . . . . . . . . . 23

2 Euclidean Vectors (EV) 29

2.1 Linear Combinations (EV1) . . . . . . . . . . . . . . . . . . . . . 30
2.2 Spanning Sets (EV2) . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Subspaces (EV3) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Linear Independence (EV4). . . . . . . . . . . . . . . . . . . . . . 51
2.5 Identifying a Basis (EV5) . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Subspace Basis and Dimension (EV6) . . . . . . . . . . . . . . . . . 63
2.7 Homogeneous Linear Systems (EV7) . . . . . . . . . . . . . . . . . . 67

3 Algebraic Properties of Linear Maps (AT) 73

3.1 Linear Transformations (AT1) . . . . . . . . . . . . . . . . . . . . 74
3.2 Standard Matrices (AT2). . . . . . . . . . . . . . . . . . . . . . . 80
3.3 Image and Kernel (AT3) . . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Injective and Surjective Linear Maps (AT4) . . . . . . . . . . . . . . . 95
3.5 Vector Spaces (AT5). . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6 Polynomial and Matrix Spaces (AT6) . . . . . . . . . . . . . . . . . 111

viii



CONTENTS ix

4 Matrices (MX) 117

4.1 Matrices and Multiplication (MX1) . . . . . . . . . . . . . . . . . . 118
4.2 The Inverse of a Matrix (MX2) . . . . . . . . . . . . . . . . . . . . 123
4.3 Solving Systems with Matrix Inverses (MX3) . . . . . . . . . . . . . . 128
4.4 Row Operations as Matrix Multiplication (MX4) . . . . . . . . . . . . 131

5 Geometric Properties of Linear Maps (GT) 136

5.1 Row Operations and Determinants (GT1) . . . . . . . . . . . . . . . 137
5.2 Computing Determinants (GT2) . . . . . . . . . . . . . . . . . . . 152
5.3 Eigenvalues and Characteristic Polynomials (GT3) . . . . . . . . . . . . 157
5.4 Eigenvectors and Eigenspaces (GT4) . . . . . . . . . . . . . . . . . . 162

Appendices

A Applications 166

A.1 Civil Engineering: Trusses and Struts . . . . . . . . . . . . . . . . . 166
A.2 Computer Science: PageRank . . . . . . . . . . . . . . . . . . . . . 174
A.3 Geology: Phases and Components . . . . . . . . . . . . . . . . . . . 180

B Appendix 182

B.1 Sample Exercises with Solutions . . . . . . . . . . . . . . . . . . . . 182
B.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Back Matter

Index 209



Chapter 1

Systems of Linear Equations (LE)

Learning Outcomes
How can we solve systems of linear equations?
By the end of this chapter, you should be able to...

1. Translate back and forth between a system of linear equations, a vector equation, and
the corresponding augmented matrix.

2. Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced
row echelon form.

3. Determine the number of solutions for a system of linear equations or a vector equation.

4. Compute the solution set for a system of linear equations or a vector equation with
infinitely many solutions.

Readiness Assurance. Before beginning this chapter, you should be able to...
1. Determine if a system to a two-variable system of linear equations will have zero, one,

or infinitely-many solutions by graphing.

• Review: Khan Academy1

2. Find the unique solution to a two-variable system of linear equations by back-substitution.

• Review: Khan Academy2

3. Describe sets using set-builder notation, and check if an element is a member of a set
described by set-builder notation.

• Review: YouTube3

1bit.ly/2l21etm
2www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations/

alg-basics-solving-systems-with-substitution/v/practice-using-substitution-for-systems
3youtu.be/xnfUZ-NTsCE

1

http://bit.ly/2l21etm
https://www.khanacademy.org/math/algebra-basics/alg-basics-systems-of-equations/alg-basics-solving-systems-with-substitution/v/practice-using-substitution-for-systems
https://youtu.be/xnfUZ-NTsCE
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1.1 Linear Systems, Vector Equations, and Augmented
Matrices (LE1)

Learning Outcomes
• Translate back and forth between a system of linear equations, a vector equation, and

the corresponding augmented matrix.

1.1.1 Warm Up
Activity 1.1.1 Consider the pairs of lines described by the equations below. Decide which
of these are parallel, identical, or transverse (i.e., intersect in a single point).

(a)

−x1 + 3x2 = 1

2x1 − 5x2 = 2

(b)

−x1 + 3x2 = 1

2x1 − 6x2 = −2

(c)

−x1 + 3x2 = 1

2x1 − 6x2 = 3

1.1.2 Class Activities
Definition 1.1.2 A matrix is an m× n array of real numbers with m rows and n columns:

a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 =
[
v⃗1 v⃗2 · · · v⃗n

]
.

Frequently we will use matrices to describe an ordered list of its column vectors:
a11
a21
...

am1

 ,


a12
a22
...

am2

 , · · · ,


a1n
a2n
...

amn

 = v⃗1, v⃗2, · · · , v⃗n.
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When order is irrelevant, we will use set notation:


a11
a21
...

am1

 ,


a12
a22
...

am2

 , · · · ,


a1n
a2n
...

amn


 = {v⃗1, v⃗2, · · · , v⃗n}.

♢
Definition 1.1.3 A Euclidean vector is an ordered list of real numbers

a1
a2
...
an

 .

We will find it useful to almost always typeset Euclidean vectors vertically, but the notation[
a1 a2 · · · an

]T is also valid when vertical typesetting is inconvenient. The set of all
Euclidean vectors with n components is denoted as Rn, and vectors are often described using
the notation v⃗.

Each number in the list is called a component, and we use the following definitions for
the sum of two vectors, and the product of a real number and a vector:

a1
a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 c


a1
a2
...
an

 =


ca1
ca2
...

can


♢

Following are some examples of addition and scalar multiplication in R4.
3
−3
0
4

+


0
2
7
1

 =


3 + 0
−3 + 2
0 + 7
4 + 1

 =


3
−1
7
5



−4


0
2
−2
3

 =


−4(0)
−4(2)
−4(−2)
−4(3)

 =


0
−8
8

−12


□

Definition 1.1.5 A linear equation is an equation of the variables xi of the form

a1x1 + a2x2 + · · ·+ anxn = b.
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A solution for a linear equation is a Euclidean vector
s1
s2
...
sn


that satisfies

a1s1 + a2s2 + · · ·+ ansn = b

(that is, a Euclidean vector whose components can be plugged into the equation). ♢
Remark 1.1.6 In previous classes you likely used the variables x, y, z in equations. However,
since this course often deals with equations of four or more variables, we will often write our
variables as xi, and assume x = x1, y = x2, z = x3, w = x4 when convenient.
Definition 1.1.7 A system of linear equations (or a linear system for short) is a
collection of one or more linear equations.

a11x1+ a12x2+ . . .+ a1nxn = b1

a21x1+ a22x2+ . . .+ a2nxn = b2
... ... ... ...

am1x1+ am2x2+ . . .+ amnxn = bm

Its solution set is given by


s1
s2
...
sn


∣∣∣∣∣∣∣∣∣


s1
s2
...
sn

 is a solution to all equations in the system

 .

♢
Remark 1.1.8 When variables in a large linear system are missing, we prefer to write the
system in one of the following standard forms:
Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1+0x2+3x3 = 3

3x1− 2x2+4x3 = 0

0x1− 1x2+1x3 =−2

Concise standard form:

x1 +3x3 = 3

3x1− 2x2+4x3 = 0

− x2+ x3 =−2

Remark 1.1.9 It will often be convenient to think of a system of equations as a vector
equation.

By applying vector operations and equating components, it is straightforward to see that
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the vector equation

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


is equivalent to the system of equations

x1 +3x3 = 3

3x1− 2x2+4x3 = 0

− x2+ x3 =−2

Definition 1.1.10 A linear system is consistent if its solution set is non-empty (that is,
there exists a solution for the system). Otherwise it is inconsistent. ♢
Fact 1.1.11 All linear systems are one of the following:

1. Consistent with one solution: its solution set contains a single vector, e.g.


 1

2
3


2. Consistent with infinitely-many solutions: its solution set contains infinitely many

vectors, e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


3. Inconsistent: its solution set is the empty set, denoted by either {} or ∅.

Activity 1.1.12 All inconsistent linear systems contain a logical contradiction. Find a
contradiction in this system to show that its solution set is the empty set.

−x1 + 2x2 = 5

2x1 − 4x2 = 6

Activity 1.1.13 Consider the following consistent linear system.

−x1 + 2x2 = −3

2x1 − 4x2 = 6

(a) Find several different solutions for this system:[
1
−1

] [
?
2

] [
0
?

] [
?
?

] [
?
?

]
(b) Suppose we let x2 = a where a is an arbitrary real number. Which of these expressions

for x1 in terms of a satisfies both equations of the linear system?

A. x1 = −3a

B. x1 = 3

C. x1 = 2a− 3

D. x1 = −4a+ 6
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(c) Given x2 = a and the expression you found in the previous task, which of these
describes the solution set for this system?

A.
{[

2a− 3
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
2a− 3

] ∣∣∣∣ a ∈ R
} C.

{[
a
b

] ∣∣∣∣ a ∈ R
}

D.
{[

2a− 3
2b− 3

] ∣∣∣∣ a ∈ R
}

Activity 1.1.14 Consider the following linear system.

x1+2x2 − x4 = 3

x3+4x4 =−2

Substitute x2 = a and x4 = b, and then solve for x1 and x3:

x1 = ? x3 = ?

Then use these to describe the solution set


?
a
?
b


∣∣∣∣∣∣∣∣ a, b ∈ R


to the linear system.
Observation 1.1.15 Solving linear systems of two variables by graphing or substitution
is reasonable for two-variable systems, but these simple techniques won’t usually cut it for
equations with more than two variables or more than two equations. For example,

−2x1− 4x2+ x3− 4x4 =−8

x1+2x2+2x3+12x4 =−1

x1+2x2+ x3+ 8x4 = 1

has the exact same solution set as the system in the previous activity, but we’ll want to learn
new techniques to compute these solutions efficiently.
Remark 1.1.16 The only important information in a linear system are its coefficients and
constants.
Original linear system:

x1 + 3x3 = 3

3x1 − 2x2 + 4x3 = 0

−x2 + x3 =−2

Verbose standard form:

1x1+0x2+3x3 = 3

3x1− 2x2+4x3 = 0

0x1− 1x2+1x3 =−2

Coefficients/constants:

1 0 3 | 3

3 −2 4 | 0

0 −1 1 | −2

Definition 1.1.17 A system of m linear equations with n variables is often represented by
writing its coefficients and constants in an augmented matrix: the m × n matrix of its
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coefficients augmented with the m constant values as a final column.

a11x1+ a12x2+ . . .+ a1nxn = b1

a21x1+ a22x2+ . . .+ a2nxn = b2
... ... ... ...

am1x1+ am2x2+ . . .+ amnxn = bm
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... . . . ... ...

am1 am2 · · · amn bm


Sometimes, we will find it useful to refer only to the coefficients of the linear system (and ig-
nore its constant terms). We call the m×n array consisting of these coefficients a coefficient
matrix. 

a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn


♢

The corresponding augmented matrix for this system is obtained by simply writing the
coefficients and constants in matrix form.
Linear system:

x1 +3x3 = 3

3x1− 2x2+4x3 = 0

− x2+ x3 =−2

Augmented matrix: 1 0 3 3
3 −2 4 0
0 −1 1 −2


Vector equation:

x1

 1
3
0

+ x2

 0
−2
−1

+ x3

 3
4
1

 =

 3
0
−2


□

1.1.3 Individual Practice
Activity 1.1.19 Consider the following augmented matrices. For each of them, decide how
many variables and how many equations the corresponding linear system has.
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(a)  2 1 3 3
1 −2 4 3
3 −1 7 −1


(b) 

2 1 3 3
1 −2 4 3
3 −1 7 −1
3 −1 7 −1


(c) 

2 0 3 3
1 0 4 3
3 0 7 −1
3 0 7 −1


(d) 

2 1 3 3
1 −2 4 3
0 0 0 0
3 −1 7 −1


1.1.4 Videos

Standalone

Figure 1 Video: Converting between systems, vector equations, and augmented matrices

1.1.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/LE1/.

https://tbil.org/video-LE1.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/LE1/
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1.1.6 Mathematical Writing Explorations
Exploration 1.1.20 Choose a value for the real constant k such that the following system
has one, many, or no solutions. In each case, write the solution set.

Consider the linear system:

x1 − x2 = 1

3x1 − 3x2 = k

Exploration 1.1.21 Consider the linear system:

ax1 + bx2 = j

cx1 + dx2 = k

Assume j and k are arbitrary real numbers.

• Choose values for a, b, c, and d, such that ad − bc = 0. Show that this system is
inconsistent.

• Prove that, if ad− bc 6= 0, the system is consistent with exactly one solution.
Exploration 1.1.22 Given a set S, we can define a relation between two arbitrary elements
a, b ∈ S. If the two elements are related, we denote this a ∼ b.

Any relation on a set S that satisfies the properties below is an equivalence relation.

• Reflexive: For any a ∈ S, a ∼ a

• Symmetric: For a, b ∈ S, if a ∼ b, then b ∼ a

• Transitive: for any a, b, c ∈ S, a ∼ b and b ∼ c implies a ∼ c

For each of the following relations, show that it is or is not an equivalence relation.

• For a, b,∈ R, a ∼ b if an only if a ≤ b.

• For a, b,∈ R, a ∼ b if an only if |a| = |b|.

1.1.7 Sample Problem and Solution
Sample problem Example B.1.1.
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1.2 Row Reduction of Matrices (LE2)

Learning Outcomes
• Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced

row echelon form.

1.2.1 Warm Up
Activity 1.2.1 Consider the following matrices:

A =

 1 0 3 3
3 −2 4 0
0 −1 1 −2

 , B =

 2 5 3
1 −2 4
3 −1 7


(a) Write down a linear system whose augmented matrix is A. Can you write down an-

other?

(b) Write down a linear system whose coefficient matrix is B. Can you write down another?

1.2.2 Class Activities
Definition 1.2.2 Two systems of linear equations (and their corresponding augmented ma-
trices) are said to be equivalent if they have the same solution set.

For example, both of these systems share the same solution set
{[

1
1

]}
.

3x1− 2x2 =1

x1+4x2 =5

3x1− 2x2 =1

4x1+2x2 =6

Therefore these augmented matrices are equivalent (even though they’re not equal), which
we denote with ∼: [

3 −2 1
1 4 5

]
6=
[
3 −2 1
4 2 6

]
[
3 −2 1
1 4 5

]
∼
[
3 −2 1
4 2 6

]
♢

Activity 1.2.3 Consider whether these matrix manipulations (A) must keep the same solu-
tion set, or (B) might result in a different solution set for the corresponding linear system.

(a) Swapping two rows, for example:
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1 2 4
1 3 5

]
∼
[
1 3 5
1 2 4

]
x+ 2y = 4 x+ 3y = 5

x+ 3y = 5 x+ 2y = 4

A. Solutions must be the same. B. Solutions might be different.

(b) Swapping two columns, for example:[
1 2 4
1 3 5

]
∼
[
2 1 4
3 1 5

]
x+ 2y = 4 2x+ y = 4

x+ 3y = 5 3x+ y = 5

A. Solutions must be the same. B. Solutions might be different.

(c) Add a constant to every term of a row, for example:

[
1 2 4
1 3 5

]
∼
[
1 + 3 2 + 3 4 + 3
1 3 5

]
x+ 2y = 4 4x+ 5y = 7

x+ 3y = 5 x+ 3y = 5

A. Solutions must be the same. B. Solutions might be different.

(d) Multiply a row by a nonzero constant, for example:

[
1 2 4
1 3 5

]
∼
[
3(1) 3(2) 3(4)
1 3 5

]
x+ 2y = 3 3x+ 6y = 12

x+ 3y = 5 x+ 3y = 5

A. Solutions must be the same. B. Solutions might be different.

(e) Add one row to another row, for example:

[
1 2 4
1 3 5

]
∼
[

1 2 4
1 + 1 3 + 2 5 + 4

]
x+ 2y = 4 ?x+ ? y = ?

x+ 3y = 5 ?x+ ? y = ?

A. Solutions must be the same. B. Solutions might be different.

(f) Replace a column with zeros, for example:[
1 2 4
1 3 5

]
∼
[
1 0 4
1 0 5

]
x+ 2y = 4 ?x+ ? y = ?

x+ 3y = 5 ?x+ ? y = ?

A. Solutions must be the same. B. Solutions might be different.
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(g) Replace a row with zeros, for example:[
1 2 4
1 3 5

]
∼
[
1 2 4
0 0 0

]
x+ 2y = 4 ?x+ ? y = ?

x+ 3y = 5 ?x+ ? y = ?

A. Solutions must be the same. B. Solutions might be different.
Activity 1.2.4

Standalone
Embed

How does adding row multiples to other rows affect a linear system’s solution set?

A. Solutions must be the same. B. Solutions might be different.
Definition 1.2.5 The following three row operations produce equivalent augmented ma-
trices.

1. Swap two rows, for example, R1 ↔ R2:[
1 2 3
4 5 6

]
∼
[
4 5 6
1 2 3

]
2. Multiply a row by a nonzero constant, for example, 2R1 → R1:[

1 2 3
4 5 6

]
∼
[
2(1) 2(2) 2(3)
4 5 6

]
3. Add a constant multiple of one row to another row, for example, R2 − 4R1 → R2:[

1 2 3
4 5 6

]
∼
[

1 2 3
4− 4(1) 5− 4(2) 6− 4(3)

]
Observe that we will use the following notation: (Combination of old rows) → (New row).

♢

https://tbil.org/AT1-interactive-add-rows.html
https://tbil.org/AT1-interactive-add-rows-if.html
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Activity 1.2.6 Each of the following linear systems has the same solution set.

A)

x+2y+ z =3

−x− y+ z =1

2x+5y+3z =7

B)

2x+5y+3z =7

−x− y+ z =1

x+2y+ z =3

C)

x − z =1

y+2z =4

y+ z =1

D)

x+2y+ z =3

y+2z =4

2x+5y+3z =7

E)

x − z =1

y+2z =4

z =3

F)

x+2y+ z =3

y+2z =4

y+ z =1

Sort these six equivalent linear systems from most complicated to simplest (in your opin-
ion).

Activity 1.2.7 Here we’ve written the sorted linear systems from Activity 1.2.6 as aug-
mented matrices. 2 5 3 7

−1 −1 1 1
1 2 1 3

 ∼

 1 2 1 3
−1 −1 1 1
2 5 3 7

 ∼

 1 2 1 3
0 1 2 4
2 5 3 7

 ∼

∼

 1 2 1 3

0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1

0 1 2 4
0 1 1 1

 ∼

 1 0 −1 1

0 1 2 4
0 0 −1 −3


Assign the following row operations to each step used to manipulate each matrix to the next:

R3 − 1R2 → R3 R2 + 1R1 → R2 R1 ↔ R3

R3 − 2R1 → R3 R1 − 2R3 → R1

Definition 1.2.8 A matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

Every matrix has a unique reduced row echelon form. If A is a matrix, we write RREF(A)
for the reduced row echelon form of that matrix. ♢
Activity 1.2.9 Recall that a matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.
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2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF. For the ones
not in RREF, determine which rule is violated and how it might be fixed.

A =

 1 0 0 3
0 0 1 −1
0 0 0 0

 B =

 1 0 4 3
0 1 0 −1
0 0 1 2

 C =

 0 0 0 0
1 2 0 3
0 0 1 −1


Activity 1.2.10 Recall that a matrix is in reduced row echelon form (RREF) if

1. The leftmost nonzero term of each row is 1. We call these terms pivots.

2. Each pivot is to the right of every higher pivot.

3. Each term that is either above or below a pivot is 0.

4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF. For the ones
not in RREF, determine which rule is violated and how it might be fixed.

D =

 1 0 2 −3
0 3 3 −3
0 0 0 0

 E =

 0 1 0 7
1 0 0 4
0 0 0 0

 F =

 1 0 0 4
0 1 0 7
0 0 1 0


Remark 1.2.11 In practice, if we simply need to convert a matrix into reduced row echelon
form, we use technology to do so.

However, it is also important to understand the Gauss-Jordan elimination algorithm
that a computer or calculator uses to convert a matrix (augmented or not) into reduced row
echelon form. Understanding this algorithm will help us better understand how to interpret
the results in many applications we use it for in Chapter 2.
Activity 1.2.12 Consider the matrix 2 6 −1 6

1 3 −1 2
−1 −3 2 0

 .

Which row operation is the best choice for the first move in converting to RREF?

A. Add row 3 to row 2 (R2 +R3 → R2)

B. Add row 2 to row 3 (R3 +R2 → R3)

C. Swap row 1 to row 2 (R1 ↔ R2)
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D. Add -2 row 2 to row 1 (R1 − 2R2 → R1)

Activity 1.2.13 Consider the matrix 1 3 −1 2
2 6 −1 6
−1 −3 2 0

 .

Which row operation is the best choice for the next move in converting to RREF?

A. Add row 1 to row 3 (R3 +R1 → R3)

B. Add -2 row 1 to row 2 (R2 − 2R1 → R2)

C. Add 2 row 2 to row 3 (R3 + 2R2 → R3)

D. Add 2 row 3 to row 2 (R2 + 2R3 → R2)

Activity 1.2.14 Consider the matrix 1 3 −1 2
0 0 1 2
0 0 1 2

 .

Which row operation is the best choice for the next move in converting to RREF?

A. Add row 1 to row 2 (R2 +R1 → R2)

B. Add -1 row 3 to row 2 (R2 −R3 → R2)

C. Add -1 row 2 to row 3 (R3 −R2 → R3)

D. Add row 2 to row 1 (R1 +R2 → R1)

Observation 1.2.15 The steps for the Gauss-Jordan elimination algorithm may be summa-
rized as follows:

1. Ignoring any rows that already have marked pivots, identify the leftmost column with
a nonzero entry.

2. Use row operations to obtain a pivot of value 1 in the topmost row that does not
already have a marked pivot.

3. Mark this pivot, then use row operations to change all values above and below the
marked pivot to 0.

4. Repeat these steps until the matrix is in RREF.

In particular, once a pivot is marked, it should remain in the same position. This will
keep you from undoing your progress towards an RREF matrix.
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Activity 1.2.16 Complete the following RREF calculation (multiple row operations may
be needed for certain steps):

A =

 2 3 2 3
−2 1 6 1
−1 −3 −4 1

 ∼

 1 ? ? ?
−2 1 6 1
−1 −3 −4 1

 ∼

 1 ? ? ?
0 ? ? ?
0 ? ? ?



∼

 1 ? ? ?

0 1 ? ?
0 ? ? ?

 ∼

 1 0 ? ?

0 1 ? ?
0 0 ? ?

 ∼ · · · ∼

 1 0 −2 0

0 1 2 0
0 0 0 1


Activity 1.2.17 Consider the matrix

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Compute RREF(A).

Activity 1.2.18 Consider the non-augmented and augmented matrices

A =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 B =

 2 4 2 −4
−2 −4 1 1
3 6 −1 −4

 .

Can RREF(A) be used to find RREF(B)?

A. Yes, RREF(A) and RREF(B) are exactly the same.

B. Yes, RREF(A) may be slightly modified to find RREF(B).

C. No, a new calculuation is required.
Activity 1.2.19 Free browser-based technologies for mathematical computation are avail-
able online.

• Go to https://sagecell.sagemath.org/.

• In the dropdown on the right, you can select a number of different languages. Select
”Octave” for the Matlab-compatible syntax used by this text.

• Type rref([1,3,2;2,5,7]) and then press the Evaluate button to compute the RREF

of
[
1 3 2
2 5 7

]
.

• Now try using whitespace to write out the matrix and compute RREF instead:
A = [1 3 2

2 5 7]

rref(A)

https://sagecell.sagemath.org/
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Activity 1.2.20 In the HTML version of this text, code cells are often embedded for your
convenience when RREFs need to be computed.

Try this out to compute RREF
[
2 −3 1
3 0 6

]
.

rref ([2,-3,1;3,0,6])

A = [2 -3 1
3 0 6]

rref(A)

1.2.3 Individual Practice
Activity 1.2.21 Find three examples of linear systems for which the RREF of their aug-
mented matrices is equal to  1 4 2 −4

0 0 0 0
0 0 0 0


Activity 1.2.22 Which of the following matrices are not in RREF?

A =

 1 0 2 −3
0 3 3 −3
0 0 0 1

 B =

 1 0 0 7
0 1 0 4
0 0 1 3

 C =

 1 0 0 4
0 1 0 7
0 0 0 4



1.2.4 Videos

Standalone

Figure 2 Video: Row reduction

1.2.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/LE2/.

https://tbil.org/video-LE2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/LE2/
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1.2.6 Mathematical Writing Explorations
Exploration 1.2.23 Prove that Gauss-Jordan Elimination preserves the solution set of a
system of linear equations in n variables. Make sure your proof includes each of the following.
Just because I’ve used bullet points here does not mean you should use bullet points in your
proof.

• Write an arbitrary system of linear equations in n variables. Your notation should be
unambiguous.

• Label an element of your solution set. You won’t know what it is exactly, so you’ll
have to use a variable. Remember what it means (by definition!) to be in the solution
set.

• Describe the three operations used in Gauss-Jordan Elimination.

• Consider all three operations in Gauss-Jordan Elimination. After each one is used,
show that the element of the solution set you picked still satisfies the definition.

Exploration 1.2.24 Let M2,2 indicate the set of all 2×2 matrices with real entries. Show that
equivalence of matrices as defined in this section is an equivalence relation, as in exploration
Exploration 1.1.22

1.2.7 Sample Problem and Solution
Sample problem Example B.1.2.

1.3 Counting Solutions for Linear Systems (LE3)

Learning Outcomes
• Determine the number of solutions for a system of linear equations or a vector equation.

1.3.1 Warm Up
Activity 1.3.1

(a) Without referring to your Activity Book, which of the four criteria for a matrix to be
in Reduced Row Echelon Form (RREF) can you recall?

(b) Which, if any, of the following matrices are in RREF? You may refer to the Activity
Book now for criteria that you may have forgotten.

P =

 1 0 2
3

−3
0 3 3 −3

5

0 0 0 0

 Q =

 0 1 0 7
1 0 0 4
0 0 0 0

 R =

 1 0 1
2

4
0 1 0 7
0 0 1 0
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1.3.2 Class Activities
Remark 1.3.2 We will frequently need to know the reduced row echelon form of matrices
during the remainder of this course, so unless you’re told otherwise, feel free to use technology
(see Activity 1.2.19) to compute RREFs efficiently.

Activity 1.3.3 Consider the following system of equations.

3x1− 2x2+13x3 = 6

2x1− 2x2+10x3 = 2

−x1+3x2− 6x3 =11

4x1+ x2+ x3 = 1.

(a) Convert this to an augmented matrix and use technology to compute its reduced row
echelon form:

RREF


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many

A = [ 3 -2 13 6
2 -2 10 2

-1 3 -6 11
4 1 1 1 ]

rref(A)

Activity 1.3.4 Consider the vector equation

x1


3
2
−1
3

+ x2


−2
−2
0
7

+ x3


13
10
−3
0

 =


6
2
1
−2


(a) Convert this to an augmented matrix and use technology to compute its reduced row

echelon form:

RREF


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


(b) Use the RREF matrix to write a linear system equivalent to the original system.
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(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many

rref ([3,-2,13,6;2,-2,10,2;-1,0,-3,1;3,7,0,-2])

Activity 1.3.5 What contradictory equations besides 0 = 1 may be obtained from the
RREF of an augmented matrix?

A. x = 0 is an obtainable contradiction

B. x = y is an obtainable contradiction

C. 0 = 17 is an obtainable contradiction

D. 0 = 1 is the only obtainable contradiction
Activity 1.3.6 Consider the following linear system.

x1 + 2x2 +3x3 = 1

2x1 + 4x2 +8x3 = 0

3x1 + 6x2+11x3 = 1

x1 + 2x2 +5x3 = −1

(a) Find its corresponding augmented matrix A and find RREF(A).

(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. One C. Infinitely-many
Fact 1.3.7 By finding RREF(A) from a linear system’s corresponding augmented matrix A,
we can immediately tell how many solutions the system has.

• If the linear system given by RREF(A) includes the contradiction

0 = 1,

that is, the RREF matrix includes the row[
0 · · · 0 1

]
,

then the system is inconsistent, which means it has zero solutions and we may write

Solution set = {} or Solution set = ∅.

• If the linear system given by RREF(A) sets each variable of the system to a single
value; that is we have:

x1 = s1
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x2 = s2
...

xn = sn

(with some possible extra 0 = 0 equations), then the system is consistent with exactly
one solution, and we may write

Solution =


s1
s2
...
sn

 but Solution set =




s1
s2
...
sn


 .

• Otherwise, the system given by the RREF matrix must not include a 0 = 1 contradiction
while including at least one equation with multiple variables. This means it is consistent
with infinitely-many different solutions. We’ll learn how to find such solution sets in
Section 1.4.

Activity 1.3.8 Consider each of the following systems of linear equations or vector equations.

(a)
x1 − x2 − 3x3 = 8
3x1 − 2x2 − 5x3 = 17
x1 − x2 − 2x3 = 7

10x1 − 8x2 − 21x3 = 65

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

(b)
x1 − 5x2 − 15x3 = −8

x2 + 3x3 = 1
x1 = 2
5x1 − 7x2 − 21x3 = −10

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

(c)
−2x1 + 2 x2 + 5x3 = 1
−x1 + x2 + 2x3 = 1
2x1 − 2x2 + x3 = −7
−2x1 + 2 x2 + 16 x3 = −10
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(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

1.3.3 Individual Practice
Activity 1.3.9 In Fact 1.1.11, we stated, but did not prove the assertion that all linear
systems are one of the following:

1. Consistent with one solution: its solution set contains a single vector, e.g.


 1

2
3


2. Consistent with infinitely-many solutions: its solution set contains infinitely many

vectors, e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


3. Inconsistent: its solution set is the empty set, denoted by either {} or ∅.

Explain why this fact is a consequence of Fact 1.3.7 above.

1.3.4 Videos

Standalone

Figure 3 Video: Finding the number of solutions for a system

1.3.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/LE3/.

https://tbil.org/video-LE3.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/LE3/
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1.3.6 Mathematical Writing Explorations
Exploration 1.3.10 A system of equations with all constants equal to 0 is called homoge-
neous. These are addressed in detail in section Section 2.7

• Choose three systems of equations from this chapter that you have already solved. Re-
place the constants with 0 to make the systems homogeneous. Solve the homogeneous
systems and make a conjecture about the relationship between the earlier solutions
you found and the associated homogeneous systems.

• Prove or disprove. A system of linear equations is homogeneous if an only if it has the
the zero vector as a solution.

1.3.7 Sample Problem and Solution
Sample problem Example B.1.3.

1.4 Linear Systems with Infinitely-Many Solutions (LE4)

Learning Outcomes
• Compute the solution set for a system of linear equations or a vector equation with

infinitely many solutions.

1.4.1 Warm Up
Activity 1.4.1 Write down any three linear systems and determine if they are consistent,
have a single solution, or have infinitely many solutions.

1.4.2 Class Activities
Activity 1.4.2 Consider this simplified linear system found to be equivalent to the system
from Activity 1.3.6:

x1 + 2x2 = 4

x3 = −1

Earlier, we determined this system has infinitely-many solutions.

(a) Let x1 = a and write the solution set in the form


 a

?
?

 ∣∣∣∣∣∣ a ∈ R

.

(b) Let x2 = b and write the solution set in the form


 ?

b
?

 ∣∣∣∣∣∣ b ∈ R

.
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(c) Which of these was easier? What features of the RREF matrix
[

1 2 0 4

0 0 1 −1

]
caused this?

Definition 1.4.3 Recall that the pivots of a matrix in RREF form are the leading 1s in
each non-zero row.

The pivot columns in an augmented matrix correspond to the bound variables in the
system of equations (x1, x3 below). The remaining variables are called free variables (x2

below). [
1 2 0 4

0 0 1 −1

]
To efficiently solve a system in RREF form, assign letters to the free variables, and then
solve for the bound variables. ♢
Activity 1.4.4 Find the solution set for the system

2x1− 2x2− 6x3+ x4− x5 = 3

−x1+ x2+3x3−x4+2x5 =−3

x1− 2x2− x3+ x4+ x5 = 2

by doing the following.

(a) Row-reduce its augmented matrix.

(b) Assign letters to the free variables (given by the non-pivot columns):

? = a

? = b

(c) Solve for the bound variables (given by the pivot columns) to show that

? = 1 + 5a+ 2b

? = 1 + 2a+ 3b

? = 3 + 3b

(d) Replace x1 through x5 with the appropriate expressions of a, b in the following set-
builder notation. 


x1

x2

x3

x4

x5


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R
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Remark 1.4.5 Don’t forget to correctly express the solution set of a linear system. Systems
with zero or one solutions may be written by listing their elements, while systems with
infinitely-many solutions may be written using set-builder notation.

• Inconsistent: ∅ or {}

◦ (not 0 or

 0
0
0

)

• Consistent with one solution: e.g.


 1

2
3


◦ (not just

 1
2
3

)

• Consistent with infinitely-many solutions: e.g.


 1

2− 3a
a

 ∣∣∣∣∣∣ a ∈ R


◦ (not just

 1
2− 3a

a

 )

Activity 1.4.6 Consider the following system of linear equations.

x1

 1
0
1

+ x2

 0
1
−1

+ x3

 −1
5
−5

+ x4

 −3
13
−13

 =

 −3
12
−12

 .

(a) Explain how to find a simpler system or vector equation that has the same solution
set.

(b) Explain how to describe this solution set using set notation.

Activity 1.4.7 Consider the following system of linear equations.

x1 − 2x3 = −3
5x1 + x2 − 7x3 = −18
5x1 − x2 − 13x3 = −12
x1 + 3 x2 + 7x3 = −12

(a) Explain how to find a simpler system or vector equation that has the same solution
set.

(b) Explain how to describe this solution set using set notation.
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1.4.3 Individual Practice
Activity 1.4.8 Consider the following linear system, its augmented matrix A, and RREF(A):

x1 − x2 + x3 = 4
x2 − 2x3 = −1
x2 − 2x3 = −3

x1 + 2 x2 − 5x3 = 0

A =


1 −1 1 4
0 1 −2 −1
0 1 −2 −3
1 2 −5 0

 , RREF(A) =


1 0 −1 0
0 1 −2 0
0 0 0 1
0 0 0 0

 .

All of the following statements are not accurate or otherwise incorrect; identify what is
problematic about the statements and correct them.

(a) The matrix A is inconsistent.

(b) The linear system has two bound variables and one free variable.

(c) The solution set to the given linear system is {∅}.

Activity 1.4.9 Consider the following linear system, its augmented matrix B, and
RREF(B):

2x1 − 2x2 − 8x3 + 3 x4 − 9x5 = −17
−x1 + x3 − x4 + 2 x5 = 6
2x1 − x2 − 5x3 + x4 − 5x5 = −10
−x1 + 3 x2 + 10 x3 + 7 x5 = 6

B =


2 −2 −8 3 −9 −17
−1 0 1 −1 2 6
2 −1 −5 1 −5 −10
−1 3 10 0 7 6



RREF(B) =


1 0 −1 0 −1 −3
0 1 3 0 2 1
0 0 0 1 −1 −3
0 0 0 0 0 0

 .

All of the following statements are not accurate or otherwise incorrect; identify what is
problematic about the statements and correct them.

(a) The matrix B is consistent with infinitely many solutions.

(b) The solution set is given by


a+ b− 3

−3 a− 2 b+ 1
a

b− 3
b

.
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(c) The variables x3, x5 are free. Setting them equal to a, b respectively and solv-
ing for the bound variables, the solution set to the linear system is given by
 a+ b− 3

−3 a− 2 b+ 1
b− 3

 ∣∣∣∣∣∣ a, b ∈ R

.

1.4.4 Videos

Standalone

Figure 4 Video: Solving a system of linear equations with infinitely-many solutions

1.4.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/LE4/.

1.4.6 Mathematical Writing Explorations
Exploration 1.4.10 Construct a system of 3 equations in 3 variables having:

• 0 free variables

• 1 free variable

• 2 free variables

In each case, solve the system you have created. Conjecture a relationship between the
number of free variables and the type of solution set that can be obtained from a given
system.
Exploration 1.4.11 For each of the following, decide if it’s true or false. If you think it’s
true, can we construct a proof? If you think it’s false, can we find a counterexample?

• If the coefficient matrix of a system of linear equations has a pivot in the rightmost
column, then the system is inconsistent.

• If a system of equations has two equations and four unknowns, then it must be consis-
tent.

https://tbil.org/video-LE4.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/LE4/
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• If a system of equations having four equations and three unknowns is consistent, then
the solution is unique.

• Suppose that a linear system has four equations and four unknowns and that the
coefficient matrix has four pivots. Then the linear system is consistent and has a
unique solution.

• Suppose that a linear system has five equations and three unknowns and that the
coefficient matrix has a pivot in every column. Then the linear system is consistent
and has a unique solution.

1.4.7 Sample Problem and Solution
Sample problem Example B.1.4.



Chapter 2

Euclidean Vectors (EV)

Learning Outcomes
What is a space of Euclidean vectors?
By the end of this chapter, you should be able to...

1. Determine if a Euclidean vector can be written as a linear combination of a given set
of Euclidean vectors by solving an appropriate vector equation.

2. Determine if a set of Euclidean vectors spans Rn by solving appropriate vector equa-
tions.

3. Determine if a subset of Rn is a subspace or not.

4. Determine if a set of Euclidean vectors is linearly dependent or independent by solving
an appropriate vector equation.

5. Explain why a set of Euclidean vectors is or is not a basis of Rn.

6. Compute a basis for the subspace spanned by a given set of Euclidean vectors, and
determine the dimension of the subspace.

7. Find a basis for the solution set of a homogeneous system of equations.

Readiness Assurance. Before beginning this chapter, you should be able to...

1. Use set builder notation to describe sets of vectors.

• Review: YouTube1

2. Add Euclidean vectors and multiply Euclidean vectors by scalars.

• Review: Khan Academy (1)2 (2)3

1youtu.be/xnfUZ-NTsCE
2www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/

adding-vectors
3www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/

29

https://youtu.be/xnfUZ-NTsCE
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/adding-vectors
https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/vectors/v/multiplying-vector-by-scalar
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3. Perform basic manipulations of augmented matrices and linear systems.

• Review: Section 1.1, Section 1.2, Section 1.3

2.1 Linear Combinations (EV1)

Learning Outcomes
• Determine if a Euclidean vector can be written as a linear combination of a given set

of Euclidean vectors by solving an appropriate vector equation.

2.1.1 Warm Up

Activity 2.1.1 Discuss which of the vectors u⃗ =

 1
−1
2

 and v⃗ =

 0
3
−1

 is a solution to

the given vector equation:

x1

 −1
2
3

+ x2

 2
−1
0

+ x3

 1
−1
1

 =

 −1
1
5


2.1.2 Class Activities
Note 2.1.2 We’ve been working with Euclidean vector spaces of the form

Rn =




x1

x2
...
xn


∣∣∣∣∣∣∣∣∣x1, x2, . . . , xn ∈ R

 .

There are other kinds of vector spaces as well (e.g. polynomials, matrices), which we will
investigate in Section 3.5. But understanding the structure of Euclidean vectors on their
own will be beneficial, even when we turn our attention to other kinds of vectors.
We will use the phrase vector space freely from this point on, even while delaying a formal

definition. Readers can choose to interpret this to mean Euclidean vector space, i.e Rn for
some n, if they wish; we do this as all of the statements we make using the term vector
space are also true for all vector spaces as defined in Definition 3.5.7.

Likewise, when we multiply a vector by a real number, as in −3

 1
−1
2

 =

 −3
3
−6

, we

refer to this real number as a scalar.
multiplying-vector-by-scalar
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We often use letters like V and W to refer to vector spaces (Euclidean or otherwise)

Definition 2.1.3 A linear combination of a set of vectors {v⃗1, v⃗2, . . . , v⃗n} is given by
c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n for any choice of scalar multiples c1, c2, . . . , cn.

For example, we can say

 3
0
5

 is a linear combination of the vectors

 1
−1
2

 and

 1
2
1


since  3

0
5

 = 2

 1
−1
2

+ 1

 1
2
1

 .

♢
Definition 2.1.4 The span of a set of vectors is the collection of all linear combinations of
that set:

span{v⃗1, v⃗2, . . . , v⃗n} = {c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n | ci ∈ R} .
For example:

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R

 .

♢

Activity 2.1.5 Consider span
{[

1
2

]}
.

(a) Sketch the four Euclidean vectors

1

[
1
2

]
=

[
1
2

]
, 3

[
1
2

]
=

[
3
6

]
, 0

[
1
2

]
=

[
0
0

]
, −2

[
1
2

]
=

[
−2
−4

]
in the xy plane by placing a dot at the (x, y) coordinate associated with each vector.

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]}
=

{
a

[
1
2

] ∣∣∣∣ a ∈ R
}

in the xy plane by plotting their (x, y) coordinates as dots. What best describes this
sketch?

A. A line B. A plane C. A parabola D. A circle
Remark 2.1.6 It is important to remember that

{v⃗1, v⃗2, . . . , v⃗n} 6= span{v⃗1, v⃗2, . . . , v⃗n}.
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For example, 
 1

−1
2

 ,

 1
2
1


is a set containing exactly two vectors, while

span


 1

−1
2

 ,

 1
2
1

 =

a

 1
−1
2

+ b

 1
2
1

 ∣∣∣∣∣∣ a, b ∈ R


is a set containing infinitely-many vectors.

Activity 2.1.7 Consider span
{[

1
2

]
,

[
−1
1

]}
.

(a) Sketch the following five Euclidean vectors in the xy plane.

1

[
1
2

]
+ 0

[
−1
1

]
= ? 0

[
1
2

]
+ 1

[
−1
1

]
= ? 1

[
1
2

]
+ 1

[
−1
1

]
= ?

−2

[
1
2

]
+ 1

[
−1
1

]
= ? − 1

[
1
2

]
+−2

[
−1
1

]
= ?

(b) Sketch a representation of all the vectors belonging to

span
{[

1
2

]
,

[
−1
1

]}
=

{
a

[
1
2

]
+ b

[
−1
1

] ∣∣∣∣ a, b ∈ R
}

in the xy plane. What best describes this sketch?

A. A line B. A plane C. A parabola D. A circle
Activity 2.1.8 Sketch a representation of all the vectors belonging to
span

{[
6
−4

]
,

[
−3
2

]}
in the xy plane. What best describes this sketch?

A. A line

B. A plane

C. A parabola

D. A cube
Activity 2.1.9 Consider the following questions to discover whether a Euclidean vector
belongs to a span.

(a) The Euclidean vector

 −1
−6
1

 belongs to span


 1

0
−3

 ,

 −1
−3
2

 exactly when
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there exists a solution to which of these vector equations?

A. x1

 −1
−6
1

+ x2

 1
0
−3

 =

 −1
−3
2


B. x1

 1
0
−3

+ x2

 −1
−3
2

 =

 −1
−6
1


C. x1

 −1
−3
2

+ x2

 −1
−6
1

+ x3

 1
0
−3

 = 0

(b) Use technology to find RREF of the corresponding augmented matrix, and then use
that matrix to find the solution set of the vector equation.

(c) Given this solution set, does

 −1
−6
1

 belong to span


 1

0
−3

 ,

 −1
−3
2

?

Observation 2.1.10 The following are all equivalent statements:

• The vector b⃗ belongs to span{v⃗1, . . . , v⃗n}.

• The vector b⃗ is a linear combination of the vectors v⃗1, . . . , v⃗n.

• The vector equation x1v⃗1 + · · ·+ xnv⃗n = b⃗ is consistent.

• The linear system corresponding to
[
v⃗1 . . . v⃗n | b⃗

]
is consistent.

• RREF
[
v⃗1 . . . v⃗n | b⃗

]
doesn’t have a row [0 · · · 0 | 1] representing the contradiction 0 =

1.
Activity 2.1.11 Consider this claim about a vector equation: −6

2
−6

is a linear combination of the vectors

 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s equivalent to this
claim.

(b) Explain why the statement you wrote is true.

(c) Since your statement was true, use the solution set to describe a linear combination of 1
0
2

 ,

 3
0
6

 ,

 2
0
4

 , and

 −4
1
−5

 that equals

 −6
2
−6

.
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Activity 2.1.12 Consider this claim about a vector equation: −5
−1
−7

 belongs to span


 1

0
2

 ,

 3
0
6

 ,

 2
0
4

 ,

 −4
1
−5

.

(a) Write a statement involving the solutions of a vector equation that’s equivalent to this
claim.

(b) Explain why the statement you wrote is false, to conclude that the vector does not
belong to the span.

2.1.3 Individual Practice
Activity 2.1.13 Before next class, find some time to do the following:

(a) Without referring to your activity book, write down the definition of a linear combi-
nation of vectors.

(b) Let u⃗ =

 1
2
0

 and v⃗ =

 −1
3
0

. Write down an example w⃗1 =

 ?
?
?

 of a linear

combination of u⃗, v⃗. Then write down an example w⃗2 =

 ?
?
?

 that is not a linear

combination of u⃗, v⃗.

(c) Draw a rough sketch of the vectors u⃗ =

 1
2
0

, v⃗ =

 −1
3
0

, w⃗1 =

 ?
?
?

, and

w⃗2 =

 ?
?
?

 in R3.
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2.1.4 Videos

Standalone

Figure 5 Video: Linear combinations

2.1.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV1/.

2.1.6 Mathematical Writing Explorations
Exploration 2.1.14 Suppose S = {v⃗1, . . . , v⃗n} is a set of vectors. Show that v⃗0 is a linear
combination of members of S, if an only if there are a set of scalars {c0, c1, . . . , cn} such that
z⃗ = c0v⃗0 + · · · + cnv⃗n. We can do this in a few parts. I’ve used bullets here to indicate all
that needs to be done. This is an ”if and only if” proof, so it needs two parts.

• First, assume that 0⃗ = c0v⃗0 + · · ·+ cnv⃗n has a solution, with c0 6= 0. Show that v⃗0 is a
linear combination of elements of S.

• Next, assume that v⃗0 is a linear combination of elements of S. Can you find the
appropriate {c0, c1, . . . , cn} to make the equation z⃗ = c0v⃗0 + · · ·+ cnv⃗n true?

• In either of your proofs above, does the case when v⃗0 = z⃗ change your thinking?
Explain why or why not.

2.1.7 Sample Problem and Solution
Sample problem Example B.1.5.

https://tbil.org/video-EV1.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/EV1/
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2.2 Spanning Sets (EV2)

Learning Outcomes
• Determine if a set of Euclidean vectors spans Rn by solving appropriate vector equa-

tions.

2.2.1 Warm Up
Activity 2.2.1 Given a set of ingredients and a meal, a recipe is a list of amounts of each
ingredient required to prepare the given meal.

(a) Use the words vector and linear combination to create a new statement that is analo-
gous to one above.

(b) Building on your analogy, what role might the word span play?

2.2.2 Class Activities
Observation 2.2.2 Any single non-zero vector/number x in R1 spans R1, since R1 =
{cx | c ∈ R}.

x0

Figure 6 An R1 vector

Activity 2.2.3 How many vectors are required to span R2? Sketch a drawing in the xy
plane to support your answer.
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Figure 7 The xy plane R2

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many
Activity 2.2.4 How many vectors are required to span R3?
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Figure 8 R3 space

A. 1

B. 2

C. 3

D. 4

E. Infinitely Many
Fact 2.2.5 At least n vectors are required to span Rn.

Figure 9 Failed attempts to span Rn by < n vectors

Activity 2.2.6 Consider the question: Does every vector in R3 belong to
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span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

?

(a) Determine if

 7
−3
−2

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(b) Determine if

 0
−4
3

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

(c) Determine if

 2
5
7

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

.

Activity 2.2.7 We’d prefer a more methodical method to decide if every vector in Rn belongs
to some spanning set, compared to the guess-and-check method we used in Activity 2.2.6.

(a) An arbitrary vector

 ?
?
?

 belongs to span


 1

−1
0

 ,

 −2
0
1

 ,

 −2
−2
2

 provided

the equation

x1

 1
−1
0

+ x2

 −2
0
1

+ x3

 −2
−2
2

 =

 ?
?
?


has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(b) We’re guaranteed at least one solution if the RREF of the corresponding augmented
matrix has no contradictions; likewise, we have no solutions if the RREF corresponds
to the contradiction 0 = 1. Given 1 −2 −2 ?

−1 0 −2 ?
0 1 2 ?

 ∼

 1 0 2 ?
0 1 2 ?
0 0 0 ?


we may conclude that the set does not span all of R3 because...

A. the row [0 1 2 | ? ] prevents a contradiction.
B. the row [0 1 2 | ? ] allows a contradiction.
C. the row [0 0 0 | ? ] prevents a contradiction.
D. the row [0 0 0 | ? ] allows a contradiction.
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Fact 2.2.8 The set {v⃗1, . . . , v⃗n} spans all of Rn exactly when the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

is consistent for every vector w⃗.
Likewise, the set {v⃗1, . . . , v⃗n} fails to span all of Rn exactly when the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

is inconsistent for some vector w⃗.
Note these two possibilities are decided based on whether or not the RREF of the vector

equation’s coefficient matrix (that is, RREF[v⃗1 . . . v⃗n]) has either all pivot rows, or at least
one non-pivot row (a row of zeroes): 1 −2 −2

−1 0 −2
0 1 2

 ∼

 1 0 2
0 1 2
0 0 0

 .

Activity 2.2.9 Consider the set of vectors S =


2
3
0
−1

 ,


1
−4
3
0

 ,


1
7
−3
−1

 ,


0
3
5
7

 ,


3
13
7
16


 and the question “Does R4 = spanS?”

(a) Rewrite this question in terms of the solutions to a vector equation.

(b) Answer your new question, and use this to answer the original question.

Activity 2.2.10 Let v⃗1, v⃗2, v⃗3 ∈ R7 be three Euclidean vectors, and suppose w⃗ is another
vector with w⃗ ∈ span {v⃗1, v⃗2, v⃗3}. What can you conclude about span {w⃗, v⃗1, v⃗2, v⃗3}?

A. span {w⃗, v⃗1, v⃗2, v⃗3} is larger than span {v⃗1, v⃗2, v⃗3}.

B. span {w⃗, v⃗1, v⃗2, v⃗3} is the same as span {v⃗1, v⃗2, v⃗3}.

C. span {w⃗, v⃗1, v⃗2, v⃗3} is smaller than span {v⃗1, v⃗2, v⃗3}.

2.2.3 Individual Practice
Activity 2.2.11 One of our important results in this lesson is Fact 2.2.5, which states that
a set of n vectors is required to span Rn. While we developed some geometric intuition for
why this true, we did not prove it in class. Before coming to class next time, follow the steps
outlined below to convince yourself of this fact using the concepts we learned in this lesson.

(a) Let {v⃗1, . . . , v⃗n} be a set of vectors living in Rn and assume that m < n. How many
rows and how many columns will the matrix [v⃗1 · · · v⃗n] have?

(b) Given no additional information about the vectors v⃗1, . . . , v⃗n, what is the maximum
possible number of pivots in RREF[v⃗1 . . . v⃗n]?
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(c) Conclude that our given set of vector cannot span all of Rn.

2.2.4 Videos

Standalone

Figure 10 Video: Determining if a set spans a Euclidean space

2.2.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV2/.

2.2.6 Mathematical Writing Explorations
Exploration 2.2.12 Construct each of the following, or show that it is impossible:

• A set of 2 vectors that spans R3

• A set of 3 vectors that spans R3

• A set of 3 vectors that does not span R3

• A set of 4 vectors that spans R3

For any of the sets you constructed that did span the required vector space, are any of the
vectors a linear combination of the others in your set?
Exploration 2.2.13 Based on these results, generalize this a conjecture about how a set of
n− 1, n and n+ 1 vectors would or would not span Rn.

2.2.7 Sample Problem and Solution
Sample problem Example B.1.6.

https://tbil.org/video-EV2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/EV2/
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2.3 Subspaces (EV3)

Learning Outcomes
• Determine if a subset of Rn is a subspace or not.

2.3.1 Warm Up
Activity 2.3.1 Consider the linear equation

x+ 2y + z = 0.

(a) Verify that both v⃗ =

 1
−1
1

 and w⃗ =

 1
0
−1

 are solutions.

(b) Is the vector 2v⃗ − 3w⃗ also a solution?

2.3.2 Class Activities
Observation 2.3.2 Recall that if S = {v⃗1, . . . , v⃗n} is subset of vectors in Rn, then span(S)
is the set of all linear combinations of vectors in S. In EV2 (Section 2.2), we learned how to
decide whether span(S) was equal to all of Rn or something strictly smaller.

Activity 2.3.3 Let S denote a set of vectors in Rn and suppose that u⃗, v⃗ ∈ span(S), c ∈ R
and that w⃗ ∈ Rn. Which of the following vectors might not belong to span(S)?

A. 0⃗

B. u⃗+ w⃗

C. u⃗+ v⃗

D. cu⃗

Definition 2.3.4 A homogeneous system of linear equations is one of the form:

a11x1+ a12x2+ . . .+ a1nxn =0

a21x1+ a22x2+ . . .+ a2nxn =0

... ... ... ...
am1x1+ am2x2+ . . .+ amnxn =0

This system is equivalent to the vector equation:

x1v⃗1 + · · ·+ xnv⃗n = 0⃗
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and the augmented matrix: 
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
... ... . . . ... ...

am1 am2 · · · amn 0


♢

Activity 2.3.5 Consider the homogeneous vector equation x1v⃗1 + · · ·+ xnv⃗n = 0⃗.

(a) Is this equation consistent?

A. no.
B. yes.
C. more information is required.

(b) Note that if

 a1
...
an

 and

 b1
...
bn

 are both solutions, we know that

a1v⃗1 + · · ·+ anv⃗n = 0⃗ and b1v⃗1 + · · ·+ bnv⃗n = 0⃗.

Therefore by adding these equations:

(a1 + b1)v⃗1 + · · ·+ (an + bn)v⃗n = 0⃗,

we may conclude that the vector

 a1 + b1
...

an + bn

 is...

A. another solution.
B. not a solution.
C. is equal to 0⃗.

(c) Similarly, if c ∈ R, then since multiplying by c yields:

(ca1)v⃗1 + · · ·+ (can)v⃗n = 0⃗,

we may conclude that the vector

 ca1
...

can

 is...

A. another solution.
B. not a solution.
C. is equal to 0⃗.
D. The empty set.
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Observation 2.3.6 If S is any set of vectors in Rn, then the set span(S) has the following
properties:

• the set span(S) is non-empty.

• the set span(S) is closed under addition: for any u⃗, v⃗ ∈ span(S), the sum u⃗+ v⃗ is also
in span(S).

• the set span(S) is closed under scalar multiplication: for any u⃗ ∈ span(S) and scalar
c ∈ R, the product cu⃗ is also in span(S).

Likewise, if W is the solution set to a homogenous vector equation, it too satisfies:

• the set W is non-empty.

• the set W is closed under addition: for any u⃗, v⃗ ∈ W , the sum u⃗+ v⃗ is also in W .

• the set span(S) is closed under scalar multiplication: for any u⃗ ∈ W and scalar c ∈ R,
the product cu⃗ is also in W .

Definition 2.3.7 A subset W of a vector space is called a subspace provided that it satisfies
the following properties:

• the subset is non-empty.

• the subset is closed under addition: for any u⃗, v⃗ ∈ W , the sum u⃗+ v⃗ is also in W .

• the subset is closed under scalar multiplication: for any u⃗ ∈ W and scalar c ∈ R,
the product cu⃗ is also in W .

♢
Observation 2.3.8 Note the similarities between a planar subspace spanned by two non-
colinear vectors in R3, and the Euclidean plane R2. While they are not the same thing (and
shouldn’t be referred to interchangably), algebraists call such similar spaces isomorphic;
we’ll learn what this means more carefully in a later chapter.
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Figure 11 A planar subset of R3 compared with the plane R2.

Activity 2.3.9 Let W =


 x

y
z

 ∣∣∣∣∣∣x+ 2y + z = 0

.

(a) Is W the empty set?

(b) Let’s assume that v⃗ =

 x
y
z

 and w⃗ =

 a
b
c

 are in W . What are we allowed to

assume?

A. x+ 2y + z = 0.
B. a+ 2b+ c = 0.

C. Both of these.
D. Neither of these.

(c) Which equation must be verified to show that v⃗ + w⃗ =

 x+ a
y + b
z + c

 also belongs to W?

A. (x+ a) + 2(y + b) + (z + c) = 0.
B. x+ a+ 2y + b+ z + c = 0.
C. x+ 2y + z = a+ 2b+ c.

(d) Use the assumptions from (a) to verify the equation from (b).

(e) Is W is a subspace of R3?

A. Yes B. No C. Not enough informa-
tion

(f) Show that kv⃗ =

 kx
ky
kz

 also belongs to W for any k ∈ R by verifying (kx) + 2(ky) +

(kz) = 0 under these assumptions.
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(g) Is W is a subspace of R3?

A. Yes B. No C. Not enough informa-
tion

Activity 2.3.10 Let W =


 x

y
z

 ∣∣∣∣∣∣x+ 2y + z = 4

.

(a) Is W the empty set?

(b) Which of these statements is valid?

A.

 1
1
1

 ∈ W , and

 2
2
2

 ∈ W , so W is a subspace.

B.

 1
1
1

 ∈ W , and

 2
2
2

 ∈ W , so W is not a subspace.

C.

 1
1
1

 ∈ W , but

 2
2
2

 6∈ W , so W is a subspace.

D.

 1
1
1

 ∈ W , but

 2
2
2

 6∈ W , so W is not a subspace.

(c) Which of these statements is valid?

(a)

 1
1
1

 ∈ W , and

 0
0
0

 ∈ W , so W is a subspace.

(b)

 1
1
1

 ∈ W , and

 0
0
0

 ∈ W , so W is not a subspace.

(c)

 1
1
1

 ∈ W , but

 0
0
0

 6∈ W , so W is a subspace.

(d)

 1
1
1

 ∈ W , but

 0
0
0

 6∈ W , so W is not a subspace.

Remark 2.3.11 In summary, any one of the following is enough to prove that a nonempty
subset W is not a subspace:

• Find specific values for u⃗, v⃗ ∈ W such that u⃗+ v⃗ 6∈ W .
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• Find specific values for c ∈ R, v⃗ ∈ W such that cv⃗ 6∈ W .

• Show that 0⃗ 6∈ W .

If you cannot do any of these, then W can be proven to be a subspace by doing all of
the following:

1. Show that W is non-empty.

2. For all v⃗, w⃗ ∈ W (not just specific values), u⃗+ v⃗ ∈ W .

3. For all v⃗ ∈ W and c ∈ R (not just specific values), cv⃗ ∈ W .

Activity 2.3.12 Consider these subsets of R3:

R =


 x

y
z

 ∣∣∣∣∣∣ y = z + 1

 S =


 x

y
z

 ∣∣∣∣∣∣ y = |z|

 T =


 x

y
z

 ∣∣∣∣∣∣ z = xy

 .

(a) Show R isn’t a subspace by showing that 0⃗ 6∈ R.

(b) Show S isn’t a subspace by finding two vectors u⃗, v⃗ ∈ S such that u⃗+ v⃗ 6∈ S.

(c) Show T isn’t a subspace by finding a vector v⃗ ∈ T such that 2v⃗ 6∈ T .

Activity 2.3.13 Consider the following two sets of Euclidean vectors:

U =

{[
x
y

]∣∣∣∣ 7x+ 4 y = 0

}
W =

{[
x
y

]∣∣∣∣ 3xy2 = 0

}
Explain why one of these sets is a subspace of R2 and one is not.

Activity 2.3.14 Consider the following attempted proof that

U =

{[
x
y

]∣∣∣∣x+ y = xy

}
is closed under scalar multiplication.

Let
[
x
y

]
∈ U , so we know that x + y = xy. We want to show k

[
x
y

]
=[

kx
ky

]
∈ U , that is, (kx) + (ky) = (kx)(ky). This is verified by the following

calculation:

(kx) + (ky) = (kx)(ky)

k(x+ y) = k2xy

0[k(x+ y)] = 0[k2xy]

0 = 0

Is this reasoning valid?
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A. Yes B. No
Remark 2.3.15 Proofs of an equality LEFT = RIGHT should generally be of one of these
forms:

1. Using a chain of equalities:

LEFT = · · ·
= · · ·
= · · ·
= RIGHT

Alternatively:

LEFT = · · · RIGHT = · · ·
= · · · = · · ·
= · · · = · · ·
= SAME = SAME

2. When the assumption THIS = THAT is already known or assumed to be true :

THIS = THAT
⇒ · · · = · · ·
⇒ · · · = · · ·
⇒ LEFT = RIGHT

Warning 2.3.16 The following proof is invalid.

LEFT = RIGHT
⇒ · · · = · · ·
⇒ · · · = · · ·
⇒ 0 = 0

⇒ ANYTHING = ANYTHING

Basically, you cannot prove something is true by assuming it’s true, and it’s not helpful to
prove to someone that zero equals itself (they probably already know that).

2.3.3 Individual Practice
Remark 2.3.17 Recall that in Activity 2.2.1 we used the words vector, linear combination,
and span to make an anology with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.
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Activity 2.3.18

(a) Given the set of ingredients S = {flour, yeast, salt,water, sugar,milk}, how should we
think of the subspace span(S)?

(b) What is one meal that lives in the subspace span(S)?

(c) What is one meal that does not live in the subspace span(S)?

Activity 2.3.19 Let

W =




x
y
z
w


∣∣∣∣∣∣∣∣x+ y = 3z + 2w

 .

The set W is a subspace. Below are two attempted proofs of the fact that W is closed under
vector addition. Both of them are invalid; explain why.

(a) Let u⃗ =


1
4
1
1

 , v⃗ =


2
−1
1
−1

 . Then both u⃗, w⃗ are elements of W . Their sum is

w⃗ =


3
3
2
0


and since

3 + 3 = 3 · (2) + 2 · (0),

it follows that w⃗ is also in W and so W is closed under vector addition.

(b) If


x
y
z
w

 ,


a
b
c
d

 are in W , we need to show that


x+ a
y + b
z + c
w + d

 is also in W. To be in W ,

we need
(x+ a) + (y + b) = 3(z + c) + 2(w + d).

Well, if
(x+ a) + (y + b) = 3(z + c) + 2(w + d),

then we know that
x+ y − 3z − 2w + a+ b− 3c− 2d = 0

by moving everything over to the left hand side. Since we are assumming that x+ y−
3z− 2w = 0 and a+ b− 3c− 2d = 0, it follows that 0 = 0, which is true, which proves
that vector addition is closed.
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2.3.4 Videos

Standalone

Figure 12 Video: Showing that a subset of a vector space is a subspace

Standalone

Figure 13 Video: Showing that a subset of a vector space is not a subspace

2.3.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV3/.

2.3.6 Mathematical Writing Explorations
Exploration 2.3.20 A square matrix M is symmetricif, for each index i, j, the entries
mij = mji. That is, the matrix is itself when reflected over the diagonal from upper left to
lower right. Prove that the set of n× n symmetric matrices is a subspace of Mn×n.
Exploration 2.3.21 The space of all real-valued function of one real variable is a vector
space. First, define ⊕ and � for this vector space. Check that you have closure (both kinds!)
and show what the zero vector is under your chosen addition. Decide if each of the following
is a subspace. If so, prove it. If not, provide the counterexample.

• The set of even functions, {f : R → R : f(−x) = f(x) for all x}.

https://tbil.org/video-EV3-a.html
https://tbil.org/video-EV3-b.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/EV3/
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• The set of odd functions, {f : R → R : f(−x) = −f(x) for all x}.

Exploration 2.3.22 Give an example of each of these, or explain why it’s not possible that
such a thing would exist.

• A nonempty subset of M2×2 that is not a subspace.

• A set of two vectors in R2 that is not a spanning set.

Exploration 2.3.23 Let V be a vector space and S = {v⃗1, v⃗2, . . . , v⃗n} a subset of V . Show
that the span of S is a subspace. Is it possible that there is a subset of V containing fewer
vectors than S, but whose span contains all of the vectors in the span of S?

2.3.7 Sample Problem and Solution
Sample problem Example B.1.7.

2.4 Linear Independence (EV4)

Learning Outcomes
• Determine if a set of Euclidean vectors is linearly dependent or independent by solving

an appropriate vector equation.

2.4.1 Warm Up
Activity 2.4.1 Consider the vector equation

x1

 1
1
1

+ x2

 2
0
−1

+ x3

 −1
2
0

 =

 −1
7
6

 .

(a) Decide which of

 3
−1
2

 or

 1
1
1

 is a solution vector.

(b) Consider now the following vector equation:

y1

 1
1
1

+ y2

 2
0
−1

+ y3

 −1
2
0

+ y4

 −1
7
6

 = 0⃗.

How is this vector equation related to the original one?

(c) Use the solution vector you found in part (a) to construct a solution vector to this new
equation.
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2.4.2 Class Activities
Activity 2.4.2 Consider the two sets

S =


 2

3
1

 ,

 1
1
4

 T =


 2

3
1

 ,

 1
1
4

 ,

 −1
0

−11

 .

Which of the following is true?

A. spanS is bigger than spanT .

B. spanS and spanT are the same size.

C. spanS is smaller than spanT .
Definition 2.4.3 We say that a set of vectors is linearly dependent if one vector in the
set belongs to the span of the others. Otherwise, we say the set is linearly independent.

Figure 14 A linearly dependent set of three vectors
You can think of linearly dependent sets as containing a redundant vector, in the sense

that you can drop a vector out without reducing the span of the set. In the above image, all
three vectors lay in the same planar subspace, but only two vectors are needed to span the
plane, so the set is linearly dependent. ♢
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Activity 2.4.4 Consider the following three vectors in R3:

v⃗1 =

 −2
0
0

 , v⃗2 =

 1
3
0

 , and v⃗3 =

 −2
5
4

 .

(a) Let w⃗ = 3v⃗1 − v⃗2 − 5v⃗3 =

 ?
?
?

. The set {v⃗1, v⃗2, v⃗3, w⃗} is...

A. linearly dependent: at least one vector is a linear combination of others
B. linearly independent: no vector is a linear combination of others

(b) Find

RREF
[
v⃗1 v⃗2 v⃗3 w⃗

]
= RREF

 −2 1 −2 ?
0 3 5 ?
0 0 4 ?

 = ? .

What does this tell you about solution set for the vector equation x1v⃗1 + x2v⃗2 + x3v⃗3 +
x4w⃗ = 0⃗?

A. It is inconsistent.
B. It is consistent with one solution.
C. It is consistent with infinitely many solutions.

(c) Which of these might explain the connection?

A. A pivot column establishes linear independence and creates a contradiction.
B. A non-pivot column both describes a linear combination and reveals the number

of solutions.
C. A pivot row describes the bound variables and prevents a contradiction.
D. A non-pivot row prevents contradictions and makes the vector equation solvable.

Fact 2.4.5 For any vector space, the set {v⃗1, . . . v⃗n} is linearly dependent if and only if the
vector equation x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗ is consistent with infinitely many solutions.

Likewise, the set of vectors {v⃗1, . . . v⃗n} is linearly independent if and only the vector
equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗

has exactly one solution:

 x1
...
xn

 =

 0
...
0

.
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Activity 2.4.6 Find

RREF


2 2 3 −1 4 0
3 0 13 10 3 0
0 0 7 7 0 0
−1 3 16 14 1 0


and mark the part of the matrix that demonstrates that

S =




2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
1




is linearly dependent (the part that shows its linear system has infinitely many solutions).

Observation 2.4.7 Compare the following results:

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly independent if and only if
RREF

[
v⃗1 . . . v⃗n

]
has all pivot columns.

• A set of Rm vectors {v⃗1, . . . v⃗n} is linearly dependent if and only if RREF
[
v⃗1 . . . v⃗n

]
has at least one non-pivot column.

• A set of Rm vectors {v⃗1, . . . v⃗n} spans Rm if and only if RREF
[
v⃗1 . . . v⃗n

]
has all

pivot rows.

• A set of Rm vectors {v⃗1, . . . v⃗n} fails to span Rm if and only if RREF
[
v⃗1 . . . v⃗n

]
has at least one non-pivot row.

Activity 2.4.8

(a) Write a statement involving the solutions of a vector equation that’s equivalent to each
claim:

(i) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
3


 is linearly independent.”

(ii) “The set of vectors




1
−1
0
−1

 ,


5
5
3
1

 ,


9
11
6
3


 is linearly dependent.”

(b) Explain how to determine which of these statements is true.

Activity 2.4.9 What is the largest number of R4 vectors that can form a linearly independent
set?
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A. 3

B. 4

C. 5

D. You can have infinitely many vectors
and still be linearly independent.

Activity 2.4.10 Is it possible for the set of Euclidean vectors {v⃗1, v⃗2, . . . , v⃗n, 0⃗} to be linearly
independent?

A. Yes B. No

2.4.3 Individual Practice
Remark 2.4.11 Recall that in Activity 2.2.1 we used the words vector, linear combination,
and span to make an anology with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.

Activity 2.4.12 Consider the statement: The set of vectors {v⃗1, v⃗2, v⃗3} is linearly indepen-
dent because the vector v⃗3 is a linear combination of v⃗1 and v⃗2. Construct an analogous
statement involving ingredients, meals, and recipes, using the terms linearly independent
and linear combination.
Activity 2.4.13 The following exercises are designed to help develop your geometric intution
around linear dependence.

(a) Draw sketches that depict the following:

• Three linearly independent vectors in R3.
• Three linearly dependent vectors in R3.

(b) If you have three linearly dependent vectors, is it necessarily the case that one of the
vectors is a multiple of the other?

2.4.4 Videos

Standalone

Figure 15 Video: Linear independence

https://tbil.org/video-EV4.html
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2.4.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV4/.

2.4.6 Mathematical Writing Explorations
Exploration 2.4.14 Prove the result of Observation 2.4.7, by showing that, given a set
S = {v⃗1, v⃗2, . . . , v⃗n} of vectors, S is linearly independent iff the equation x1v⃗1 + x2v⃗2 + . . . +
xnv⃗n = 0⃗ is only true when x1 = x2 = · · · = xn = 0.

2.4.7 Sample Problem and Solution
Sample problem Example B.1.8.

2.5 Identifying a Basis (EV5)

Learning Outcomes
• Explain why a set of Euclidean vectors is or is not a basis of Rn.

2.5.1 Warm Up
Remark 2.5.1 Recall that in Activity 2.2.1 we used the words vector, linear combination,
and span to make an anology with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.
Activity 2.5.2 Consider the following set of ingredients:

S = {tomato, olive oil, dough, cheese, pizza sauce, garlic}

(a) Does ”pizza” live inside of span(S)?

(b) Identify which ingredients in S make the set linearly dependent.

(c) Can you think of a subset S ′ of S that is linearly independent and for which ”pizza” is
still in spanS ′?

2.5.2 Class Activities
Activity 2.5.3 Consider the set of vectors

S =




3
−2
−1
0

 ,


2
4
1
1

 ,


0

−16
−5
−3

 ,


1
2
3
0

 ,


3
3
0
1


 .

https://tbil.org/linear-algebra/preview/exercises/#/bank/EV4/
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(a) Express the vector


5
2
0
1

 as a linear combination of the vectors in S, i.e. find scalars

such that
5
2
0
1

 = ?


3
−2
−1
0

+ ?


2
4
1
1

+ ?


0

−16
−5
−3

+ ?


1
2
3
0

+ ?


3
3
0
1

 .

(b) Find a different way to express the vector


5
2
0
1

 as a linear combination of the vectors

in S.

(c) Consider another vector


8
6
7
5

. Without computing the RREF of another matrix, how

many ways can this vector be written as a linear combination of the vectors in S?

A. Zero.
B. One.
C. Infinitely-many.
D. Computing a new matrix RREF is necessary.

Activity 2.5.4 Let’s review some of the terminology we’ve been dealing with...

(a) If every vector in a vector space can be constructed as one or more linear combinations
of vectors in a set S, we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

(b) If the zero vector 0⃗ can be constructed as a unique linear combination of vectors in a
set S (the combination multiplying every vector by the scalar value 0), we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.
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(c) If every vector of a vector space can either be constructed as a unique linear combination
of vectors in a set S, or not at all, we can say...

A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.

Definition 2.5.5 A basis of a vector space V is a set of vectors S contained in V for which

1. Every vector in the vector space can be expressed as a linear combination of the vectors
in S.

2. For each vector v⃗ in the vector space, there is only one way to write it as a linear
combination of the vectors in S.

These two properties may be expressed more succintly as the statement ”Every vector in V
can be expressed uniquely as a linear combination of the vectors in S”. ♢
Observation 2.5.6 In terms of a vector equation, a set S = {v⃗1, . . . , v⃗n} is a basis of a
vector space if the vector equation

x1v⃗1 + · · ·+ xnv⃗n = w⃗

has a unique solution for every vector w⃗ in the vector space.
Put another way, a basis may be thought of as a minimal set of “building blocks” that

can be used to construct any other vector of the vector space.

Activity 2.5.7 Let S be a basis (Definition 2.5.5) for a vector space. Then...

A. the set S must both span the vector space and be linearly independent.

B. the set S must span the vector space but could be linearly dependent.

C. the set S must be linearly independent but could fail to span the vector space.

D. the set S could fail to span the vector space and could be linearly dependent.
Activity 2.5.8 The vectors

î = (1, 0, 0) =

 1
0
0

 ĵ = (0, 1, 0) =

 0
1
0

 k̂ = (0, 0, 1) =

 0
0
1


form a basis {̂i, ĵ, k̂} used frequently in multivariable calculus.

Find the unique linear combination of these vectors

? î+ ? ĵ + ? k̂
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that equals the vector

(3,−2, 4) =

 3
−2
4


in xyz space.
Definition 2.5.9 The standard basis of Rn is the set {e⃗1, . . . , e⃗n} where

e⃗1 =



1
0
0
...
0
0


e⃗2 =



0
1
0
...
0
0


· · · e⃗n =



0
0
0
...
0
1


.

In particular, the standard basis for R3 is {e⃗1, e⃗2, e⃗3} = {̂i, ĵ, k̂}. ♢
Activity 2.5.10 Take the RREF of an appropriate matrix to determine if each of the
following sets is a basis for R4.

(a) 


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(b) 


2
3
0
−1

 ,


2
0
0
3

 ,


4
3
0
2

 ,


−3
0
1
3




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.
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(c) 


2
3
0
−1

 ,


2
0
0
3

 ,


3
13
7
16

 ,


−1
10
7
14

 ,


4
3
0
2




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(d) 


2
3
0
−1

 ,


4
3
0
2

 ,


−3
0
1
3

 ,


3
6
1
5




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

(e) 


5
3
0
−1

 ,


−2
1
0
3

 ,


4
5
1
3




A. A basis, because it both spans R4 and is linearly independent.
B. Not a basis, because while it spans R4, it is linearly dependent.
C. Not a basis, because while it is linearly independent, it fails to span R4.
D. Not a basis, because not only does it fail to span R4, it’s also linearly dependent.

Activity 2.5.11 If {v⃗1, v⃗2, v⃗3, v⃗4} is a basis for R4, that means RREF[v⃗1 v⃗2 v⃗3 v⃗4] has a pivot
in every row (because it spans), and has a pivot in every column (because it’s linearly
independent).

What is RREF[v⃗1 v⃗2 v⃗3 v⃗4]?

RREF[v⃗1 v⃗2 v⃗3 v⃗4] =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
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Fact 2.5.12 The set {v⃗1, . . . , v⃗m} is a basis for Rn if and only if m = n and RREF[v⃗1 . . . v⃗n] =
1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

.

That is, a basis for Rn must have exactly n vectors and its square matrix must row-reduce
to the so-called identity matrix containing all zeros except for a downward diagonal of
ones. (We will learn where the identity matrix gets its name in a later module.)

2.5.3 Individual Practice
Activity 2.5.13 Let S denote a set of vectors in Rn. Without referring to your Activity
Book, write down:

(a) The definition of what it means for S to be linearly independent.

(b) The definition of what it means for S to span Rn.

(c) The definition of what it means for S to be a basis for Rn.

Activity 2.5.14 You are going on a trip and need to pack. Let S denote the set of items
that you are packing in your suitcase.

(a) Give an example of such a set of items S that you would say ”spans” everything you
need, but is linearly dependent.

(b) Give an example of such a set of items S that is linearly independent, but does not
”span” everything you need.

(c) Give an example of such a set S that you might reasonably consider to be a ”basis” for
what you need?
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2.5.4 Videos

Standalone

Figure 16 Video: Verifying that a set of vectors is a basis of a vector space

2.5.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV5/.

2.5.6 Mathematical Writing Explorations
Exploration 2.5.15

• What is a basis for M2,2?

• What about M3,3?

• Could we write each of these in a way that looks like the standard basis vectors in
Rm for some m? Make a conjecture about the relationship between these spaces of
matrices and standard Eulidean space.

Exploration 2.5.16 Recall our earlier definition of symmetric matrices. Find a basis for
each of the following:

• The space of 2× 2 symmetric matrices.

• The space of 3× 3 symmetric matrices.

• The space of n× n symmetric matrices.
Exploration 2.5.17 Must a basis for the space P2, the space of all quadratic polynomials,
contain a polynomial of each degree less than or equal to 2? Generalize your result to
polynomials of arbitrary degree.

2.5.7 Sample Problem and Solution
Sample problem Example B.1.9.

https://tbil.org/video-EV5.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/EV5/
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2.6 Subspace Basis and Dimension (EV6)

Learning Outcomes
• Compute a basis for the subspace spanned by a given set of Euclidean vectors, and

determine the dimension of the subspace.

2.6.1 Warm Up
Activity 2.6.1 Consider the set S of vectors in R4 given by

S =




2
3
0
1

 ,


2
0
1
−1




(a) Is the set S linearly independent or linearly dependent?

(b) How would you describe the subspace spanS geometrically?

(c) What do the spaces spanS and R2 have in common? In what ways do they differ?

2.6.2 Class Activities
Observation 2.6.2 Recall from section Section 2.3 that a subspace of a vector space is
the result of spanning a set of vectors from that vector space.

Recall also that a linearly dependent set contains “redundant” vectors. For example, only
two of the three vectors in Figure 14 are needed to span the planar subspace.

Activity 2.6.3 Consider the subspace of R4 given by W =

span




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


.

(a) Mark the column of RREF


2 2 2 1
3 0 −3 5
0 1 2 −1
1 −1 −3 0

 that shows that W ’s spanning set is

linearly dependent.

(b) What would be the result of removing the vector that gave us this column?

A. The set still spans W , and remains linearly dependent.
B. The set still spans W , but is now also linearly independent.
C. The set no longer spans W , and remains linearly dependent.
D. The set no longer spans W , but is now linearly independent.
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rref ([2,2,2,1; 3,0,-3,5; 0,1,2,-1; 1,-1,-3,0])

Definition 2.6.4 Let W be a subspace of a vector space. A basis for W is a linearly
independent set of vectors that spans W (but not necessarily the entire vector space). ♢
Observation 2.6.5 So given a set S = {v⃗1, . . . , v⃗m}, to compute a basis for the
subspace spanS, simply remove the vectors corresponding to the non-pivot columns of
RREF[v⃗1 . . . v⃗m]. For example, since

RREF

 1 2 0 1
2 4 −2 2
3 6 −2 1

 =

 1 2 0 1

0 0 1 1
0 0 0 0



the subspace W = span


 1

2
3

 ,

 2
4
6

 ,

 0
−2
−2

 ,

 1
2
1

 has


 1

2
3

 ,

 0
−2
−2

 as a

basis.
Activity 2.6.6

(a) Find a basis for spanS where

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 .

(b) Find a basis for spanT where

T =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 .

Observation 2.6.7 Even though we found different bases for them, spanS and spanT are
exactly the same subspace of R4, since

S =




2
3
0
1

 ,


2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0


 =




2
0
1
−1

 ,


2
−3
2
−3

 ,


1
5
−1
0

 ,


2
3
0
1


 = T .

Thus the basis for a subspace is not unique in general.
Fact 2.6.8 Any non-trivial real vector space has infinitely-many different bases, but all the
bases for a given vector space are exactly the same size.
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For example,

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


are all valid bases for R3, and they all contain three vectors.
Definition 2.6.9 The dimension of a vector space or subspace is equal to the size of any
basis for the vector space.

As you’d expect, Rn has dimension n. For example, R3 has dimension 3 because any
basis for R3 such as

{e⃗1, e⃗2, e⃗3} and


 1

0
0

 ,

 0
1
0

 ,

 1
1
1

 and


 1

0
−3

 ,

 2
−2
1

 ,

 3
−2
5


contains exactly three vectors. ♢
Activity 2.6.10 Consider the following subspace W of R4:

W = span




1
0
0
−1

 ,


−2
0
0
2

 ,


−3
1
−5
5

 ,


12
−3
15
−18


 .

(a) Explain and demonstrate how to find a basis of W .

(b) Explain and demonstrate how to find the dimension of W .

Activity 2.6.11 The dimension of a subspace may be found by doing what with an appro-
priate RREF matrix?

A. Count the rows.

B. Count the non-pivot columns.

C. Count the pivots.

D. Add the number of pivot rows and pivot columns.

2.6.3 Individual Practice
Activity 2.6.12 In Observation 2.6.5, we found a basis for the subspace

W = span


 1

2
3

 ,

 2
4
6

 ,

 0
−2
−2

 ,

 1
2
1

 .
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To do so, we use the results of the calculation:

RREF

 1 2 0 1
2 4 −2 2
3 6 −2 1

 =

 1 2 0 1

0 0 1 1
0 0 0 0



to conclude that the set


 1

2
3

 ,

 0
−2
−2

, the set of vectors corresponding to the pivot

columns of the RREF, is a basis for W .

(a) Explain why neither of the vectors

 1
0
0

 ,

 0
1
0

 are elements of W .

(b) Explain why this shows that, in general, when we calculate a basis for W =
span{v⃗1, . . . , v⃗n}, the pivot columns of RREF[v⃗1 . . . v⃗n] themselves do not form a basis
for W .

2.6.4 Videos

Standalone

Figure 17 Video: Finding a basis of a subspace and computing the dimension of a subspace

2.6.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV6/.

2.6.6 Mathematical Writing Explorations
Exploration 2.6.13 Prove each of the following statements is true.

• If {⃗b1, b⃗2, . . . , b⃗m} and {c⃗1, c⃗2, . . . , c⃗n} are each a basis for a vector space V , then m = n.

• If {v⃗1, v⃗2 . . . , v⃗n} is linearly independent, then so is {v⃗1, v⃗1 + v⃗2, . . . , v⃗1 + v⃗2 + · · ·+ v⃗n}.

• Let V be a vector space of dimension n, and v⃗ ∈ V . Then there exists a basis for V

https://tbil.org/video-EV6.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/EV6/
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which contains v⃗.
Exploration 2.6.14 Suppose we have the set of all function f : S → R. We claim that this
is a vector space under the usual operation of function addition and scalar multiplication.
What is the dimension of this space for each choice of S below:

• S = {1}

• S = {1, 2}

• S = {1, 2, . . . , n}

• S = R
Exploration 2.6.15 Suppose you have the vector space V =
 x

y
z

 ∈ R3 : x+ y + z = 1

 with the operations

 x1

y1
z1

 ⊕

 x2

y2
z2

 = x1 + x2 − 1
y1 + y2
z1 + z2

 and α �

 x1

y1
z1

 =

 αx1 − α + 1
αy1
αz1

 . Find a basis for V and de-

termine it’s dimension.

2.6.7 Sample Problem and Solution
Sample problem Example B.1.10.

2.7 Homogeneous Linear Systems (EV7)

Learning Outcomes
• Find a basis for the solution set of a homogeneous system of equations.

2.7.1 Warmup
Remark 2.7.1 Recall from Section 2.3 that a homogeneous system of linear equations is
one of the form:

a11x1+ a12x2+ . . .+ a1nxn =0

a21x1+ a22x2+ . . .+ a2nxn =0

... ... ... ...
am1x1+ am2x2+ . . .+ amnxn =0

This system is equivalent to the vector equation:

x1v⃗1 + · · ·+ xnv⃗n = 0⃗
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and the augmented matrix: 
a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
... ... . . . ... ...

am1 am2 · · · amn 0

 .

Activity 2.7.2 In Section 2.3, we observed that if

x1v⃗1 + · · ·+ xnv⃗n = 0⃗

is a homogenous vector equation, then:

• The zero vector 0⃗ is a solution;

• The sum of any two solutions is again a solution;

• Multiplying a solution by a scalar produces another solution.

Based on this recollection, which of the following best describes the solution set to the
homogenous equation?

A. A basis for Rn.

B. A subspace of Rn.

C. All of Rn.

D. The empty set.

2.7.2 Class Activities
Activity 2.7.3 Consider the homogeneous system of equations

x1+2x2 + x4 =0

2x1+4x2−x3− 2x4 =0

3x1+6x2−x3− x4 =0

(a) Find its solution set (a subspace of R4).

(b) Rewrite this solution space in the forma


?
?
?
?

+ b


?
?
?
?


∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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(c) Rewrite this solution space in the form

span




?
?
?
?

 ,


?
?
?
?


 .

(d) Which of these choices best describes the set of two vectors




?
?
?
?

 ,


?
?
?
?


 used in

this span?

A. The set is linearly dependent.
B. The set is linearly independent.
C. The set spans all of R4.
D. The set fails to span the solution space.

Fact 2.7.4 The coefficients of the free variables in the solution space of a linear system
always yield linearly independent vectors that span the solution space.

Thus if a


−2
1
0
0

+ b


−1
0
−4
1


∣∣∣∣∣∣∣∣ a, b ∈ R

 = span




−2
1
0
0

 ,


−1
0
−4
1




is the solution space for a homogeneous system, then


−2
1
0
0

 ,


−1
0
−4
1




is a basis for the solution space.
Activity 2.7.5 Consider the homogeneous system of equations

2x1+4x2+2x3− 4x4 =0

−2x1− 4x2+ x3+ x4 =0

3x1+6x2− x3− 4x4 =0

Find a basis for its solution space.
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Activity 2.7.6 Consider the homogeneous vector equation

x1

 2
−2
3

+ x2

 4
−4
6

+ x3

 2
1
−1

+ x4

 −4
1
−4

 =

 0
0
0


Find a basis for its solution space.

Activity 2.7.7 Consider the homogeneous system of equations

x1− 3x2+2x3 =0

2x1+6x2+4x3 =0

x1+6x2− 4x3 =0

(a) Find its solution space.

(b) Which of these is the best choice of basis for this solution space?

A {} B {⃗0} C The basis does not ex-
ist

Activity 2.7.8 To create a computer-animated film, an animator first models a scene as
a subset of R3. Then to transform this three-dimensional visual data for display on a two-
dimensional movie screen or television set, the computer could apply a linear tranformation
that maps visual information at the point (x, y, z) ∈ R3 onto the pixel located at (x+ y, y−
z) ∈ R2.

(a) What homoegeneous linear system describes the positions (x, y, z) within the original
scene that would be aligned with the pixel (0, 0) on the screen?

(b) Solve this system to describe these locations.

2.7.3 Individual Practice

Activity 2.7.9 Let S =




−2
1
0
0

 ,


−1
0
−4
1

 ,


1
0
−2
3


 and A =


−2 −1 1
1 0 0
0 −4 −2
0 1 3

 ; note

that

RREF(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 .

The following statements are all invalid for at least one reason. Determine what makes them
invalid and, suggest alternative valid statements that the author may have meant instead.

(a) The matrix A is linearly independent because RREF(A) has a pivot in each column.
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(b) The matrix A does not span R4 because RREF(A) has a row of zeroes.

(c) The set of vectors S spans.

(d) The set of vectors S is a basis.

2.7.4 Videos

Standalone

Figure 18 Video: Polynomial and matrix calculations

2.7.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/EV7/.

2.7.6 Mathematical Writing Explorations
Exploration 2.7.10 An n × n matrix M is non-singular if the associated homogeneous
system with coefficient matrix M is consistent with one solution. Assume the matrices in
the writing explorations in this section are all non-singular.

• Prove that the reduced row echelon form of M is the identity matrix.

• Prove that, for any column vector b⃗ =


b1
b2
...
bn

, the system of equations given by

[
M b⃗

]
has a unique solution.

• Prove that the columns of M form a basis for Rn.

• Prove that the rank of M is n.

https://tbil.org/video-EV7.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/EV7/
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2.7.7 Sample Problem and Solution
Sample problem Example B.1.11.



Chapter 3

Algebraic Properties of Linear Maps
(AT)

Learning Outcomes
How can we understand linear maps algebraically?
By the end of this chapter, you should be able to...

1. Determine if a map between Euclidean vector spaces is linear or not.

2. Translate back and forth between a linear transformation of Euclidean spaces and its
standard matrix, and perform related computations.

3. Compute a basis for the kernel and a basis for the image of a linear map, and verify
that the rank-nullity theorem holds for a given linear map.

4. Determine if a given linear map is injective and/or surjective.

5. Explain why a given set with defined addition and scalar multiplication does satisfy a
given vector space property, but nonetheless isn’t a vector space.

6. Answer questions about vector spaces of polynomials or matrices.

Readiness Assurance. Before beginning this chapter, you should be able to...

1. State the definition of a spanning set, and determine if a set of Euclidean vectors spans
Rn.

• Review: Section 2.2

2. State the definition of linear independence, and determine if a set of Euclidean vectors
is linearly dependent or independent.

• Review: Section 2.4

3. State the definition of a basis, and determine if a set of Euclidean vectors is a basis.

73
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• Review: Section 2.5, Section 2.6

4. Find a basis of the solution space to a homogeneous system of linear equations.

• Review: Section 2.7

3.1 Linear Transformations (AT1)

Learning Outcomes
• Determine if a map between Euclidean vector spaces is linear or not.

3.1.1 Warm Up
Activity 3.1.1

(a) What is our definition for a set S of vectors to be linearly independent?

(b) What specific calculation would you perform to test is a set S of Euclidean vectors is
linearly independent?

Activity 3.1.2

(a) What is our definition for a set S of vectors in Rn to span Rn ?

(b) What specific calculation would you perform to test is a set S of Euclidean vectors
spans all of Rn ?

3.1.2 Class Activities
Definition 3.1.3 A linear transformation (also called a linear map) is a map between
vector spaces that preserves the vector space operations. More precisely, if V and W are
vector spaces, a map T : V → W is called a linear transformation if

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V , and

2. T (cv⃗) = cT (v⃗) for any c ∈ R, and v⃗ ∈ V .

In other words, a map is linear when vector space operations can be applied before or after
the transformation without affecting the result. ♢
Definition 3.1.4 Given a linear transformation T : V → W , V is called the domain of T
and W is called the co-domain of T .
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v⃗

domain R3

Linear transformation T : R3 → R2

T (v⃗)

co-domain R2

Figure 19 A linear transformation with a domain of R3 and a co-domain of R2

♢
Observation 3.1.5 One example of a linear transformation R3 → R2 is the projection of
three-dimesional data onto a two-dimensional screen, as is necessary for computer animiation
in film or video games.

Figure 20 A projection of a 3D teapot onto a 2D screen
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Activity 3.1.6 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x− z
3y

]
.

(a) Compute the result of adding vectors before a T transformation:

T

 x
y
z

+

 u
v
w

 = T

 x+ u
y + v
z + w


A.
[
x− u+ z − w

3y − 3v

]

B.
[
x+ u− z − w

3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(b) Compute the result of adding vectors after a T transformation:

T

 x
y
z

+ T

 u
v
w

 =

[
x− z
3y

]
+

[
u− w
3v

]

A.
[
x− u+ z − w

3y − 3v

]

B.
[
x+ u− z − w

3y + 3v

]
C.

 x+ u
3y + 3v
z + w


D.

 x− u
3y − 3v
z − w


(c) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.

(d) Compute the result of scalar multiplcation before a T transformation:

T

c

 x
y
z

 = T

 cx
cy
cz


A.
[
cx− cz
3cy

]

B.
[
cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c
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(e) Compute the result of scalar multiplcation after a T transformation:

cT

 x
y
z

 = c

[
x− z
3y

]

A.
[
cx− cz
3cy

]

B.
[
cx+ cz
−3cy

]
C.

 x+ c
3y + c
z + c


D.

 x− c
3y − c
z − c


(f) Is T a linear transformation?

A. Yes.
B. No.
C. More work is necessary to know.

Activity 3.1.7 Let S : R2 → R4 be given by

S

([
x
y

])
=


x+ y
x2

y + 3
y − 2x


(a) Compute

S

([
0
1

]
+

[
2
3

])
= S

([
2
4

])

A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(b) Compute

S

([
0
1

])
+ S

([
2
3

])
=


0 + 1
02

1 + 3
1− 20

+


2 + 3
22

3 + 3
3− 22



A.


6
4
7
0

 B.


−3
0
1
5

 C.


−3
−1
7
5

 D.


6
4
10
−1


(c) Is T a linear transformation?
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A. Yes.
B. No.
C. More work is necessary to know.

Activity 3.1.8 Fill in the ? s, assuming T : R3 → R3 is linear:

T

 0
0
0

 = T

 ?

 1
1
1

 = ?T

 1
1
1

 =

 ?
?
?


Remark 3.1.9 In summary, any one of the following is enough to prove that T : V → W is
not a linear transformation:

• Find specific values for v⃗, w⃗ ∈ V such that T (v⃗ + w⃗) 6= T (v⃗) + T (w⃗).

• Find specific values for v⃗ ∈ V and c ∈ R such that T (cv⃗) 6= cT (v⃗).

• Show T (⃗0) 6= 0⃗.

If you cannot do any of these, then T can be proven to be a linear transformation by
doing both of the following:

1. For all v⃗, w⃗ ∈ V (not just specific values), T (v⃗ + w⃗) = T (v⃗) + T (w⃗).

2. For all v⃗ ∈ V and c ∈ R (not just specific values), T (cv⃗) = cT (v⃗).

(Note the similarities between this process and showing that a subset of a vector space
is or is not a subspace: Remark 2.3.11.)

Activity 3.1.10

(a) Consider the following maps of Euclidean vectors P : R3 → R3 and Q : R3 → R3

defined by

P

 x
y
z

 =

 −2x− 3 y − 3 z
3x+ 4 y + 4 z
3x+ 4 y + 5 z

 and Q

 x
y
z

 =

 x− 4 y + 9 z
y − 2 z

8 y2 − 3xz

 .

Which do you suspect?

A. P is linear, but Q is not.
B. Q is linear, but P is not.

C. Both maps are linear.
D. Neither map is linear.

(b) Consider the following map of Euclidean vectors S : R2 → R2

S

([
x
y

])
=

[
x+ 2 y
9xy

]
.

Prove that S is not a linear transformation.
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(c) Consider the following map of Euclidean vectors T : R2 → R2

T

([
x
y

])
=

[
8x− 6 y
6x− 4 y

]
.

Prove that T is a linear transformation.

3.1.3 Individual Practice
Activity 3.1.11 Let f(x) = x3 − 1. Then, f : R → R is a function with domain and
codomain equal to R. Is f(x) is a linear transformation?

Activity 3.1.12

(a) Is it the case that rotating u⃗ + v⃗ about the origin by π
2
= 90◦ is the same as first

rotating each of u⃗, v⃗ and then adding them together?

(b) Is it the case that rotating 5u⃗ about the origin by π
2
= 90◦ is the same as first rotating

u⃗ by π
2
= 90◦ and then scaling by 5?

(c) Based on this, do you suspect that the transformation R : R2 → R2 given by rotating
vectors about the origin through an angle of π

2
= 90◦ is linear? Do you think there is

anything special about the angle π
2
= 90◦?

Activity 3.1.13 In Activity 2.2.1, we made an analogy between vectors and linear combina-
tions with ingredients and recipes. Let us think of cooking as a transformation of ingredients.
In this analogy, would it be appropriate for us to consider ”cooking” to be a linear transfor-
mation or not? Describe your reasoning.

3.1.4 Videos

Standalone

Figure 21 Video: Showing a transformation is linear

https://tbil.org/video-AT1-1.html
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Standalone

Figure 22 Video: Showing a transformation is not linear

3.1.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/AT1/.

3.1.6 Mathematical Writing Explorations

Exploration 3.1.14 If V,W are vectors spaces, with associated zero vectors 0⃗V and 0⃗W ,
and T : V → W is a linear transformation, does T (⃗0V ) = 0⃗W ? Prove this is true, or find a
counterexample.
Exploration 3.1.15 Assume f : V → W is a linear transformation between vector spaces.
Let v⃗ ∈ V with additive inverse v⃗−1. Prove that f(v⃗−1) = [f(v⃗)]−1.

3.1.7 Sample Problem and Solution
Sample problem Example B.1.12.

3.2 Standard Matrices (AT2)

Learning Outcomes
• Translate back and forth between a linear transformation of Euclidean spaces and its

standard matrix, and perform related computations.

3.2.1 Warm Up
Remark 3.2.1 Recall that a linear map T : V → W satisfies

1. T (v⃗ + w⃗) = T (v⃗) + T (w⃗) for any v⃗, w⃗ ∈ V .

2. T (cv⃗) = cT (v⃗) for any c ∈ R, v⃗ ∈ V .

https://tbil.org/video-AT1-2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/AT1/
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In other words, a map is linear when vector space operations can be applied before or after
the transformation without affecting the result.
Activity 3.2.2 Can you recall the following?

(a) Given a transformation, what do the terms domain and codomain mean?

(b) What does the notation T : V → W mean?

3.2.2 Class Activities

Activity 3.2.3 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]

and T

 0
0
1

 =

[
−3
2

]
. What is T

 3
0
0

?

A.
[
6
3

]

B.
[
−9
6

]
C.
[
−4
−2

]

D.
[

6
−4

]

Activity 3.2.4 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]

and T

 0
0
1

 =

[
−3
2

]
. What is T

 1
0
1

?

A.
[
2
1

]

B.
[

3
−1

]
C.
[
−1
3

]

D.
[

5
−8

]

Activity 3.2.5 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]

and T

 0
0
1

 =

[
−3
2

]
. What is T

 −2
0
−3

?

A.
[
2
1

]

B.
[

3
−1

]
C.
[
−1
3

]

D.
[

5
−8

]
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Activity 3.2.6 Suppose T : R3 → R2 is a linear map, and you know T

 1
0
0

 =

[
2
1

]
and T

 0
0
1

 =

[
−3
2

]
. What piece of information would help you compute

T

 0
4
−1

?

A. The value of T

 0
−4
0

.

B. The value of T

 0
1
0

.

C. The value of T

 1
1
1

.

D. Any of the above.

Fact 3.2.7 Consider any basis {⃗b1, . . . , b⃗n} for V . Since every vector v⃗ can be written as a
linear combination of basis vectors, v⃗ = x1⃗b1 + · · ·+ xn⃗bn, we may compute T (v⃗) as follows:

T (v⃗) = T (x1⃗b1 + · · ·+ xn⃗bn) = x1T (⃗b1) + · · ·+ xnT (⃗bn).

Therefore any linear transformation T : V → W can be defined by just describing the values
of T (⃗bi).

Put another way, the images of the basis vectors completely determine the transforma-
tion T .
Definition 3.2.8 Since a linear transformation T : Rn → Rm is determined by its action on
the standard basis {e⃗1, . . . , e⃗n}, it is convenient to store this information in an m×n matrix,
called the standard matrix of T , given by [T (e⃗1) · · · T (e⃗n)].

For example, let T : R3 → R2 be the linear map determined by the following values for
T applied to the standard basis of R3.

T (e⃗1) = T

([
1
0
0

])
=
[

3
2

]
T (e⃗2) = T

([
0
1
0

])
=
[

−1
4

]
T (e⃗3) = T

([
0
0
1

])
=
[

5
0

]
Then the standard matrix corresponding to T is

[
T (e⃗1) T (e⃗2) T (e⃗3)

]
=

[
3 −1 5
2 4 0

]
.

♢
Activity 3.2.9 Let T : R4 → R3 be the linear transformation given by

T (e⃗1) =

 0
3
−2

 T (e⃗2) =

 −3
0
1

 T (e⃗3) =

 4
−2
1

 T (e⃗4) =

 2
0
0
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Write the standard matrix [T (e⃗1) · · · T (e⃗n)] for T .

Activity 3.2.10 Let T : R3 → R2 be the linear transformation given by

T

 x
y
z

 =

[
x+ 3z

2x− y − 4z

]

(a) Compute T (e⃗1), T (e⃗2), and T (e⃗3).

(b) Find the standard matrix for T .

Fact 3.2.11 Because every linear map T : Rn → Rm has a linear combination of the variables
in each component, and thus T (e⃗i) yields exactly the coefficients of xi, the standard matrix
for T is simply an array of the coefficients of the xi:

T




x
y
z
w


 =

[
ax+ by + cz + dw
ex+ fy + gz + hw

]
A =

[
a b c d
e f g h

]

Since the formula for a linear transformation T and its standard matrix A may both
be used to compute the transformation of a vector x⃗, we will often write T (x⃗) and Ax⃗
interchangably:

T




x1

x2

x3

x4


 =

[
ax1 + bx2 + cx3 + dx4

ex1 + fx2 + gx3 + hx4

]
= A


x1

x2

x3

x4

 =

[
a b c d
e f g h

]
x1

x2

x3

x4


Activity 3.2.12 Let T : R3 → R3 be the linear transformation given by the standard matrix 3 −2 −1

4 5 2
0 −2 1

 .

(a) Compute T

 1
2
3

.

(b) Compute T

 x
y
z

.

Activity 3.2.13 Compute the following linear transformations of vectors given their stan-
dard matrices.
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(a)

T1

([
1
2

])
for the standard matrix A1 =


4 3
0 −1
1 1
3 0


(b)

T2




1
1
0
−3


 for the standard matrix A2 =

[
4 3 0 −1
1 1 3 0

]

(c)

T3

 0
−2
0

 for the standard matrix A3 =


4 3 0
0 −1 3
5 1 1
3 0 0


3.2.3 Individual Practice
Activity 3.2.14 Consider the linear transformation R : R2 → R2 given by rotating vectors
about the origin through an angle of π

4
= 45◦.

(a) If e⃗1, e⃗2 are the standard basis vectors of R2, calculate R(e⃗1), R(e⃗2).

(b) What is the standard matrix representing R?

Activity 3.2.15 Consider the linear transformation S : R2 → R2 given by reflecting vectors
across the line x1 = x2.

(a) If e⃗1, e⃗2 are the standard basis vectors of R2, calculate S(e⃗1), S(e⃗2).

(b) What is the standard matrix representing S?



CHAPTER 3. ALGEBRAIC PROPERTIES OF LINEAR MAPS (AT) 85

3.2.4 Videos

Standalone

Figure 23 Video: Using the standard matrix to compute the image of a vector

3.2.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/AT2/.

3.2.6 Mathematical Writing Explorations
We can represent images in the plane R2 using vectors, and manipulate those images with
linear transformations. We introduce some notation in these explorations that is needed for
their completion, but is not essential to the rest of the text. These have a geometric flair to
them, and can be understood by thinking of geometric transformations in terms of standard
matrices.

Given two vectors v⃗ =


v1
v2
...
vn

 and w⃗ =


w1

w2
...
wn

, we define the dot product as

v⃗ · w⃗ = v1w1 + v2w2 + · · · vnwn.

Exploration 3.2.16 For each of the following properties, determine if it is held by the dot
product. Either provide a proof it the property holds, or provide a counter-example if it does
not.

• Distributive over addition (e.g., (u⃗+ v⃗) · w⃗ = u⃗ · w⃗ + v⃗ · w⃗)?

• Associative?

• Commutative?
Exploration 3.2.17 Given the properties you proved in the last exploration, could the dot
product take the place of ⊕ as a vector space operation on Rn?

https://tbil.org/video-AT2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/AT2/
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Exploration 3.2.18 Is the dot product a linear operator? That is, given vectors u⃗, v⃗, w⃗ ∈ Rn,
and k,m ∈ R, is it true that

u⃗ · (kv⃗ +mw⃗) = k(u⃗ · v⃗) +m(u⃗ · w⃗).

Prove or provide a counter-example.

Exploration 3.2.19 Assume v⃗ =


v1
v2
...
vn

 and define the length of a vector by

|v⃗| =

(
n∑

i=1

v2i

)1/2

.

Prove that |u⃗| = |v⃗| if an only if u⃗ + v⃗ and u⃗ − v⃗ are perpendicular. You may use the fact
(try and prove it!) that two vectors are perpendicular if and only if their dot product is zero.
Exploration 3.2.20

• A dilation is given by by mapping a vector v⃗ =

[
x
y

]
to some scalar multiple of v⃗.

• A rotation is given by v⃗ 7→
[

cos(θ)x− sin(θ)y
cos(θ)y + sin(θ)x

]
.

• A reflection of v⃗ over a line l can be found by first finding a vector l⃗ =

[
lx
ly

]
along

l, then v⃗ 7→ 2 l⃗·v⃗
l⃗·⃗l
l⃗ − v⃗.

Represent each of the following transformations with respect to the standard basis in R2.

• Rotation through an angle θ.

• Reflection over a line l passing through the origin.

• Dilation by some scalar s.

Prove that each transformation is linear, and that your matrix representations are correct.

3.2.7 Sample Problem and Solution
Sample problem Example B.1.13.
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3.3 Image and Kernel (AT3)

Learning Outcomes
• Compute a basis for the kernel and a basis for the image of a linear map, and verify

that the rank-nullity theorem holds for a given linear map.

3.3.1 Warm Up

Activity 3.3.1 Consider the matrix A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .

(a) The matrix A is the standard matrix of a linear transformation T . What is the domain
and the codomain of the transformation T?

(b) Describe how T transforms the standard basis vectors of the domain that you found
above.

3.3.2 Class Activities
Activity 3.3.2 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R2 describes the set of all vectors that transform into 0⃗?

A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}

Definition 3.3.3 Let T : V → W be a linear transformation, and let z⃗ be the additive
identity (the “zero vector”) of W . The kernel of T is an important subspace of V defined
by

kerT =
{
v⃗ ∈ V

∣∣ T (v⃗) = z⃗
}



CHAPTER 3. ALGEBRAIC PROPERTIES OF LINEAR MAPS (AT) 88

kerT

0⃗

Figure 24 The kernel of a linear transformation
♢

Activity 3.3.4 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Which of these subspaces of R3 describes kerT , the set of all vectors that transform into 0⃗?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

a
0

 ∣∣∣∣∣∣ a ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R


Activity 3.3.5 Let T : R3 → R2 be the linear transformation given by the standard matrix

T

 x
y
z

 =

[
3x+ 4y − z
x+ 2y + z

]

(a) Set T

 x
y
z

 =

[
0
0

]
to find a linear system of equations whose solution set is the

kernel.

(b) Use RREF(A) to solve this homogeneous system of equations and find a basis for the
kernel of T .
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Activity 3.3.6 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 2x+ 4y + 2z − 4w
−2x− 4y + z + w
3x+ 6y − z − 4w

 .

Find a basis for the kernel of T .
Activity 3.3.7 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Which of these subspaces of R3 describes the set of all vectors that are the result of using T
to transform R2 vectors?

A.


 0

0
a

 ∣∣∣∣∣∣ a ∈ R


B.


 a

b
0

 ∣∣∣∣∣∣ a, b ∈ R



C.


 0

0
0


D.


 a

b
c

 ∣∣∣∣∣∣ a, b, c ∈ R


Definition 3.3.8 Let T : V → W be a linear transformation. The image of T is an
important subspace of W defined by

ImT =
{
w⃗ ∈ W

∣∣ there is some v⃗ ∈ V with T (v⃗) = w⃗
}

In the examples below, the left example’s image is all of R2, but the right example’s
image is a planar subspace of R3.

Figure 25 The image of a linear transformation
♢

Activity 3.3.9 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]
Which of these subspaces of R2 describes ImT , the set of all vectors that are the result of
using T to transform R3 vectors?
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A.
{[

a
a

] ∣∣∣∣ a ∈ R
}

B.
{[

a
0

] ∣∣∣∣ a ∈ R
}

C.
{[

0
0

]}

D.
{[

a
b

] ∣∣∣∣ a, b ∈ R
}

Activity 3.3.10 Let T : R4 → R3 be the linear transformation given by the standard matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 =
[
T (e⃗1) T (e⃗2) T (e⃗3) T (e⃗4)

]
.

Consider the question: Which vectors w⃗ in R3 belong to ImT?

(a) Determine if

 12
3
3

 belongs to ImT .

(b) Determine if

 1
1
1

 belongs to ImT .

(c) An arbitrary vector

 ?
?
?

 belongs to ImT provided the equation

x1T (e⃗1) + x2T (e⃗2) + x3T (e⃗3) + x4T (e⃗4) = w⃗

has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.

(d) Based on this, how do ImT and span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} relate to each other?

A. The set ImT contains span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} but is not equal to it.
B. The set span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} contains ImT but is not equal to it.
C. The set ImT and span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)} are equal to each other.
D. There is no relation between these two sets.

Observation 3.3.11 Let T : R4 → R3 be the linear transformation given by the standard
matrix

A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 .
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Since the set


 3

−1
2

 ,

 4
1
1

 ,

 7
0
3

 ,

 1
2
−1

 spans ImT , we can obtain a basis for

ImT by finding RREFA =

 1 0 1 −1
0 1 1 1
0 0 0 0

 and only using the vectors corresponding to

pivot columns: 
 3

−1
2

 ,

 4
1
1


Fact 3.3.12 Let T : Rn → Rm be a linear transformation with standard matrix A.

• The kernel of T is the solution set of the homogeneous system given by the augmented
matrix

[
A 0⃗

]
. Use the coefficients of its free variables to get a basis for the kernel

(as in Fact 2.7.4).

• The image of T is the span of the columns of A. Remove the vectors creating non-pivot
columns in RREFA to get a basis for the image (as in Observation 2.6.5).

Activity 3.3.13 Let T : R3 → R4 be the linear transformation given by the standard matrix

A =


1 −3 2
2 −6 0
0 0 1
−1 3 1

 .

Find a basis for the kernel and a basis for the image of T .
Activity 3.3.14 Let T : Rn → Rm be a linear transformation with standard matrix A.
Which of the following is equal to the dimension of the kernel of T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows
Activity 3.3.15 Let T : Rn → Rm be a linear transformation with standard matrix A.
Which of the following is equal to the dimension of the image of T?

A. The number of pivot columns

B. The number of non-pivot columns

C. The number of pivot rows

D. The number of non-pivot rows
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Observation 3.3.16 Combining these with the observation that the number of columns is
the dimension of the domain of T , we have the rank-nullity theorem:

The dimension of the domain of T equals dim(kerT ) + dim(ImT ).

The dimension of the image is called the rank of T (or A) and the dimension of the kernel
is called the nullity.

Activity 3.3.17 Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 x− y + 5 z + 3w
−x− 4 z − 2w
y − 2 z − w

 .

(a) Explain and demonstrate how to find the image of T and a basis for that image.

(b) Explain and demonstrate how to find the kernel of T and a basis for that kernel.

(c) Explain and demonstrate how to find the rank and nullity of T , and why the rank-
nullity theorem holds for T .

3.3.3 Individual Practice
Activity 3.3.18 In this section, we’ve introduced two important subspaces that are associ-
ated with a linear transformation T : V → W , namely: ImT , the image of T , and kerT , the
kernel of T . The following sequence is designed to help you internalize these definitions. Try
to complete them without referring to your Activity Book, and then check your answers.

(a) One of kerT and ImT is a subspace of the domain and the other is a subspace of the
codomain. Which is which?

(b) Write down the precise definitions of these subspaces.

(c) How would you describe these definitions to a layperson?

(d) What picture, or other study strategy would be helpful to you in conceptualizing how
these defintions fit together?
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3.3.4 Videos

Standalone

Figure 26 Video: The kernel and image of a linear transformation

Standalone

Figure 27 Video: Finding a basis of the image of a linear transformation

Standalone

Figure 28 Video: Finding a basis of the kernel of a linear transformation

https://tbil.org/video-AT3-1.html
https://tbil.org/video-AT3-2.html
https://tbil.org/video-AT3-3.html
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Standalone

Figure 29 Video: The rank-nullity theorem

3.3.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/AT3/.

3.3.6 Mathematical Writing Explorations
Exploration 3.3.19 Assume f : V → W is a linear map. Let {v⃗1, v⃗2, . . . , v⃗n} be a set of
vectors in V , and set w⃗i = f(v⃗i).

• If the set {w⃗1, w⃗2, . . . , w⃗n} is linearly independent, must the set {v⃗1, v⃗2, . . . , v⃗n} also be
linearly independent?

• If the set {v⃗1, v⃗2, . . . , v⃗n} is linearly independent, must the set {w⃗1, w⃗2, . . . , w⃗n} also be
linearly independent?

• If the set {w⃗1, w⃗2, . . . , w⃗n} spans W , must the set {v⃗1, v⃗2, . . . , v⃗n} also span V ?

• If the set {v⃗1, v⃗2, . . . , v⃗n} spans V , must the set {w⃗1, w⃗2, . . . , w⃗n} also span W?

• In light of this, is the image of the basis of a vector space always a basis for the
codomain?

Exploration 3.3.20 Prove the Rank-Nullity Theorem. Use the steps below to help you.

• The theorem states that, given a linear map h : V → W , with V and W vector spaces,
the rank of h, plus the nullity of h, equals the dimension of the domain V . Assume
that the dimension of V is n.

• For simplicity, denote the rank of h by R(h), and the nullity by N (h).

• Recall that R(h) is the dimension of the range space of h. State the precise definition.

• Recall that N (h) is the dimension of the null space of h. State the precise definition.

• Begin with a basis for the null space, denoted BN = {β⃗1, β⃗2, . . . , β⃗k}. Show how this

https://tbil.org/video-AT3-4.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/AT3/
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can be extended to a basis BV for V , with BV = {β⃗1, β⃗2, . . . , β⃗k, ⃗βk+1, ⃗βk+2, . . . , β⃗n}.
In this portion, you should assume k ≤ n, and construct additional vectors which are
not linear combinations of vectors in BN . Prove that you can always do this until you
have n total linearly independent vectors.

• Show that BR = {h( ⃗βk+1), h( ⃗βk+2), . . . , h(β⃗n)} is a basis for the range space. Start by
showing that it is linearly independent, and be sure you prove that each element of the
range space can be written as a linear combination of BR.

• Show that BR spans the range space.

• State your conclusion.

3.3.7 Sample Problem and Solution
Sample problem Example B.1.14.

3.4 Injective and Surjective Linear Maps (AT4)

Learning Outcomes
• Determine if a given linear map is injective and/or surjective.

3.4.1 Warm Up
Activity 3.4.1 Consider the linear transformation T : R4 → R3 that is represented by the

standard matrix A =

 3 4 7 1
−1 1 0 2
2 1 3 −1

 . Which of the following processes helps us compute

a basis for ImT and which helps us compute a basis for kerT?

A. Compute RREF(A) and consider the set of columns of A that correspond to columns
in RREF(A) with pivots.

B. Calculate a basis for the solution space to the homogenous system of equations for
which A is the coefficient matrix.

3.4.2 Class Activities
Definition 3.4.2 Let T : V → W be a linear transformation. T is called injective or
one-to-one if T does not map two distinct vectors to the same place. More precisely, T is
injective if T (v⃗) 6= T (w⃗) whenever v⃗ 6= w⃗.
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v⃗

w⃗

T (v⃗)
T (w⃗)

injective

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective

Figure 30 An injective transformation and a non-injective transformation
♢

Activity 3.4.3 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) 6= T (w⃗) whenever v⃗ 6= w⃗.

C. No, because T

 0
0
1

 6= T

 0
0
2

.

D. No, because T

 0
0
1

 = T

 0
0
2

.

Activity 3.4.4 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T injective?

A. Yes, because T (v⃗) = T (w⃗) whenever v⃗ = w⃗.

B. Yes, because T (v⃗) 6= T (w⃗) whenever v⃗ 6= w⃗.

C. No, because T

([
1
2

])
6= T

([
3
4

])
.

D. No, because T

([
1
2

])
= T

([
3
4

])
.

Definition 3.4.5 Let T : V → W be a linear transformation. T is called surjective or
onto if every element of W is mapped to by an element of V . More precisely, for every
w⃗ ∈ W , there is some v⃗ ∈ V with T (v⃗) = w⃗.
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surjective not surjective

Figure 31 A surjective transformation and a non-surjective transformation
♢

Activity 3.4.6 Let T : R2 → R3 be given by

T

([
x
y

])
=

 x
y
0

 with standard matrix

 1 0
0 1
0 0


Is T surjective?

A. Yes, because for every w⃗ =

 x
y
z

 ∈ R3, there exists v⃗ =

[
x
y

]
∈ R2 such that

T (v⃗) = w⃗.

B. No, because T

([
x
y

])
can never equal

 1
1
1

.

C. No, because T

([
x
y

])
can never equal

 0
0
0

.

Activity 3.4.7 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
x
y

]
with standard matrix

[
1 0 0
0 1 0

]

Is T surjective?

A. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 x
y
42

 ∈ R3 such that

T (v⃗) = w⃗.

B. Yes, because for every w⃗ =

[
x
y

]
∈ R2, there exists v⃗ =

 0
0
z

 ∈ R3 such that

T (v⃗) = w⃗.
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C. No, because T

 x
y
z

 can never equal
[

3
−2

]
.

Activity 3.4.8 Let T : V → W be a linear transformation where kerT contains multiple
vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective
Fact 3.4.9 A linear transformation T is injective if and only if kerT = {⃗0}. Put another
way, an injective linear transformation may be recognized by its trivial kernel.

v⃗

w⃗

0⃗ T (v⃗)
T (w⃗)

T (⃗0) = 0⃗

Figure 32 A linear transformation with trivial kernel, which is therefore injective

Activity 3.4.10 Let T : V → R3 be a linear transformation where ImT may be spanned
by only two vectors. What can you conclude?

A. T is injective

B. T is not injective

C. T is surjective

D. T is not surjective
Fact 3.4.11 A linear transformation T : V → W is surjective if and only if ImT = W . Put
another way, a surjective linear transformation may be recognized by its identical codomain
and image.

surjective, ImT = R2 not surjective, ImT 6= R3

Figure 33 A linear transformation with identical codomain and image, which is therefore
surjective; and a linear transformation with an image smaller than the codomain R3, which
is therefore not surjective.
Definition 3.4.12 A transformation that is both injective and surjective is said to be
bijective. ♢
Activity 3.4.13 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
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bijective (both).

1. The kernel of T is trivial, i.e. kerT = {⃗0}.

2. The image of T equals its codomain, i.e. ImT = Rm.

3. For every w⃗ ∈ Rm, the set {v⃗ ∈ Rn|T (v⃗) = w⃗} contains exactly one vector.

Activity 3.4.14 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. The columns of A span Rm.

2. The columns of A form a basis for Rm.

3. The columns of A are linearly independent.
Activity 3.4.15 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. RREF(A) is the identity matrix.

2. Every column of RREF(A) has a pivot.

3. Every row of RREF(A) has a pivot.

Activity 3.4.16 Let T : Rn → Rm be a linear map with standard matrix A. Determine
whether each of the following statements means T is (A) injective, (B) surjective, or (C)
bijective (both).

1. The system of linear equations given by the augmented matrix
[
A b⃗

]
has a solution

for all b⃗ ∈ Rm.

2. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly

one solution for all b⃗ ∈ Rm.

3. The system of linear equations given by the augmented matrix
[
A 0⃗

]
has exactly

one solution.
Observation 3.4.17 The easiest way to determine if the linear map with standard matrix
A is injective is to see if RREF(A) has a pivot in each column.

The easiest way to determine if the linear map with standard matrix A is surjective is to
see if RREF(A) has a pivot in each row.

Activity 3.4.18 What can you conclude about the linear map T : R2 → R3 with standard

matrix

 a b
c d
e f

?
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A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.

Activity 3.4.19 What can you conclude about the linear map T : R3 → R2 with standard
matrix

[
a b c
d e f

]
?

A. Its standard matrix has more columns than rows, so T is not injective.

B. Its standard matrix has more columns than rows, so T is injective.

C. Its standard matrix has more rows than columns, so T is not surjective.

D. Its standard matrix has more rows than columns, so T is surjective.
Fact 3.4.20 The following are true for any linear map T : V → W :

• If dim(V ) > dim(W ), then T is not injective.

• If dim(V ) < dim(W ), then T is not surjective.

Basically, a linear transformation cannot reduce dimension without collapsing vectors into
each other, and a linear transformation cannot increase dimension from its domain to its
image.

v⃗
w⃗

T (v⃗) = T (w⃗)

not injective, 3 > 2 not surjective, 2 < 3

Figure 34 A linear transformation whose domain has a larger dimension than its codomain,
and is therefore not injective; and a linear transformation whose domain has a smaller
dimension than its codomain, and is therefore not surjective.

But dimension arguments cannot be used to prove a map is injective or surjective.

Activity 3.4.21 Suppose T : Rn → R4 with standard matrix A =


a11 a12 · · · a1n
a21 a22 · · · a2n
a31 a32 · · · a3n
a41 a42 · · · a4n

 is

bijective.

(a) How many pivot rows must RREFA have?

(b) How many pivot columns must RREFA have?
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(c) What is RREFA?

Activity 3.4.22 Let T : Rn → Rn be a bijective linear map with standard matrix A. Label
each of the following as true or false.

A. RREF(A) is the identity matrix.

B. The columns of A form a basis for Rn

C. The system of linear equations given by the augmented matrix
[
A b⃗

]
has exactly

one solution for each b⃗ ∈ Rn.
Observation 3.4.23 The easiest way to show that the linear map with standard matrix A
is bijective is to show that RREF(A) is the identity matrix.

Activity 3.4.24 Let T : R3 → R3 be given by the standard matrix

A =

 2 1 −1
4 1 1
6 2 1

 .

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref([2,1,-1; 4,1,1; 6,2,1])

Activity 3.4.25 Let T : R3 → R3 be given by

T

 x
y
z

 =

 2x+ y − z
4x+ y + z
6x+ 2y

 .

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref([2,1,-1; 4,1,1; 6,2,0])

Activity 3.4.26 Let T : R2 → R3 be given by

T

([
x
y

])
=

 2x+ 3y
x− y
x+ 3y

 .

Which of the following must be true?
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A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref ([2 ,3;1 , -1;1 ,3])

Activity 3.4.27 Let T : R3 → R2 be given by

T

 x
y
z

 =

[
2x+ y − z
4x+ y + z

]
.

Which of the following must be true?

A. T is neither injective nor surjective

B. T is injective but not surjective

C. T is surjective but not injective

D. T is bijective.

rref ([2,1,-1;4,1,1])

3.4.2.1 Individual Practice

Activity 3.4.28 Let T : Rn → Rm be a linear transformation with standard matrix A. We
reasoned during class that the following statements are logically equivalent:

1. The columns of A are linearly independent.

2. RREF(A) has a pivot in each column.

3. The transformation T is injective.

4. The system of equations given by [A|⃗0] has a unique solution.

While they are all logically equivalent, they are different statements that offer varied per-
spectives on our growing conceptual knowledge of linear algebra.

(a) If you are asked to decide if a transformation T is injective, which of the above state-
ments do you think is the most useful?

(b) Can you think of some situations in which translating between these four statements
might be useful to you?

Activity 3.4.29 Let T : Rn → Rm be a linear transformation with standard matrix A. We
reasoned during class that the following statements are logically equivalent:

1. The columns of A span all of Rm.

2. RREF(A) has a pivot in each row.

3. The transformation T is surjective.
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4. The system of equations given by [A|⃗b] is always consistent.

While they are all logically equivalent, they are different statements that offer varied per-
spectives on our growing conceptual knowledge of linear algebra.

(a) If you are asked to decide if a transformation T is surjective, which of the above
statements do you think is the most useful?

(b) Can you think of some situations in which translating between these four statements
might be useful to you?

3.4.3 Videos

Standalone

Figure 35 Video: The kernel and image of a linear transformation

Standalone

Figure 36 Video: Finding a basis of the image of a linear transformation

3.4.4 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/AT4/.

https://tbil.org/video-AT4-1.html
https://tbil.org/video-AT4-2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/AT4/
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3.4.5 Mathematical Writing Explorations
Exploration 3.4.30 Suppose that f : V → W is a linear transformation between two vector
spaces V and W . State carefully what conditions f must satisfy. Let 0⃗V and 0⃗W be the zero
vectors in V and W respectively.

• Prove that f is one-to-one if and only if f(0⃗V ) = 0⃗W , and that 0⃗V is the unique element
of V which is mapped to 0⃗W . Remember that this needs to be done in both directions.
First prove the if and only if statement, and then show the uniqueness.

• Do not use subtraction in your proof. The only vector space operation we have is
addition, and a structure preserving function only preserves addition. If you are writing
v⃗− v⃗ = 0⃗V , what you really mean is that v⃗⊕ v⃗−1 = 0⃗V , where v⃗−1 is the additive inverse
of v⃗.

Exploration 3.4.31 Start with an n-dimensional vector space V . We can define the dual
of V , denoted V ∗, by

V ∗ = {h : V → R : h is linear}.
Prove that V is isomorphic toV ∗. Here are some things to think about as you work through
this.

• Start by assuming you have a basis for V . How many basis vectors should you have?

• For each basis vector in V , define a function that returns 1 if it’s given that basis
vector, and returns 0 if it’s given any other basis vector. For example, if b⃗i and b⃗j are
each members of the basis for V , and you’ll need a function fi : V → {0, 1}, where
fi(bi) = 1 and fi(bj) = 0 for all j 6= i.

• How many of these functions will you need? Show that each of them is in V ∗.

• Show that the functions you found in the last part are a basis for V ∗? To do this, take
an arbitrary function h ∈ V ∗ and some vector v⃗ ∈ V . Write v⃗ in terms of the basis
you chose earlier. How can you write h(v⃗), with respect to that basis? Pay attention
to the fact that all functions in V ∗ are linear.

• Now that you’ve got a basis for V and a basis for V ∗, can you find an isomorphism?

3.4.6 Sample Problem and Solution
Sample problem Example B.1.15.
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3.5 Vector Spaces (AT5)

Learning Outcomes
• Explain why a given set with defined addition and scalar multiplication does satisfy a

given vector space property, but nonetheless isn’t a vector space.

3.5.1 Warm Up
Activity 3.5.1

(a) How would you describe a sandwich to someone who has never seen a sandwich before?

(b) How would you describe to someone what a vector is?

3.5.2 Class Activities
Observation 3.5.2 Consider the following applications of properties of the real numbers R:

1. 1 + (2 + 3) = (1 + 2) + 3.

2. 7 + 4 = 4 + 7.

3. There exists some ? where 5 + ? = 5.

4. There exists some ? where 9 + ? = 0.

5. 1
2
(1 + 7) is the only number that is equally distant from 1 and 7.

Activity 3.5.3 Which of the following properites of R2 Euclidean vectors is NOT true?

A.
[
x1

x2

]
+

([
y1
y2

]
+

[
z1
z2

])
=

([
x1

x2

]
+

[
y1
y2

])
+

[
z1
z2

]
.

B.
[
x1

x2

]
+

[
y1
y2

]
=

[
y1
y2

]
+

[
x1

x2

]
.

C. There exists some
[

?
?

]
where

[
x1

x2

]
+

[
?
?

]
=

[
x1

x2

]
.

D. There exists some
[

?
?

]
where

[
x1

x2

]
+

[
?
?

]
=

[
0
0

]
.

E. 1

2

([
x1

x2

]
+

[
y1
y2

])
is the only vector whose endpoint is equally distant from the

endpoints of
[
x1

x2

]
and

[
y1
y2

]
.
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Observation 3.5.4 Consider the following applications of properites of the real numbers R:

1. 3(2(7)) = (3 · 2)(7).

2. 1(19) = 19.

3. There exists some ? such that ? · 4 = 9.

4. 3 · (2 + 8) = 3 · 2 + 3 · 8.

5. (2 + 7) · 4 = 2 · 4 + 7 · 4.

Activity 3.5.5 Which of the following properites of R2 Euclidean vectors is NOT true?

A. a

(
b

[
x1

x2

])
= ab

[
x1

x2

]
.

B. 1

[
x1

x2

]
=

[
x1

x2

]
.

C. There exists some ? such that ?

[
x1

x2

]
=

[
y1
y2

]
.

D. a(u⃗+ v⃗) = au⃗+ av⃗.

E. (a+ b)v⃗ = av⃗ + bv⃗.

Fact 3.5.6 Every Euclidean vector space Rn satisfies the following properties, where u⃗, v⃗, w⃗
are Euclidean vectors and a, b are scalars.

1. Vector addition is associative: u⃗+ (v⃗ + w⃗) = (u⃗+ v⃗) + w⃗.

2. Vector addition is commutative: u⃗+ v⃗ = v⃗ + u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ + z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ + (−v⃗) = z⃗.

5. Scalar multiplication is associative: a(bv⃗) = (ab)v⃗.

6. 1 is a multiplicative identity: 1v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a(u⃗+ v⃗) = (au⃗) + (av⃗).

8. Scalar multiplication distributes over scalar addition: (a+ b)v⃗ = (av⃗) + (bv⃗).

Definition 3.5.7 A vector space V is any set of mathematical objects, called vectors,
and a set of numbers, called scalars, with associated addition ⊕ and scalar multiplication �
operations that satisfy the following properties. Let u⃗, v⃗, w⃗ be vectors belonging to V , and
let a, b be scalars.
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We always assume the codomain of our operations is V , i.e. that addition is a map V ×V →
V and that scalar multiplication is a map R× V → V .

Likewise, we only consider “real” vector spaces, i.e. those whose scalars come from R.
However, one can similarly define vector spaces with scalars from other fields like the complex
or rational numbers.

1. Vector addition is associative: u⃗⊕ (v⃗ ⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗.

2. Vector addition is commutative: u⃗⊕ v⃗ = v⃗ ⊕ u⃗.

3. An additive identity exists: There exists some z⃗ where v⃗ ⊕ z⃗ = v⃗.

4. Additive inverses exist: There exists some −v⃗ where v⃗ ⊕ (−v⃗) = z⃗.

5. Scalar multiplication is associative: a� (b� v⃗) = (ab)� v⃗.

6. 1 is a multiplicative identity: 1� v⃗ = v⃗.

7. Scalar multiplication distributes over vector addition: a� (u⃗⊕ v⃗) = (a� u⃗)⊕ (a� v⃗).

8. Scalar multiplication distributes over scalar addition: (a+ b)� v⃗ = (a� v⃗)⊕ (b� v⃗).

♢
Remark 3.5.8 Consider the set C of complex numbers with the usual defintion for addition:
(a+ bi)⊕ (c+ di) = (a+ c) + (b+ d)i.

Let u⃗ = a+ bi, v⃗ = c+ di, and w⃗ = e+ f i. Then

u⃗⊕ (v⃗ ⊕ w⃗) = (a+ bi)⊕ ((c+ di)⊕ (e+ f i))
= (a+ bi)⊕ ((c+ e) + (d+ f)i)
= (a+ c+ e) + (b+ d+ f)i

(u⃗⊕ v⃗)⊕ w⃗ = ((a+ bi)⊕ (c+ di))⊕ (e+ f i)
= ((a+ c) + (b+ d)i)⊕ (e+ f i)
= (a+ c+ e) + (b+ d+ f)i

This proves that complex addition is associative: u⃗⊕ (v⃗ ⊕ w⃗) = (u⃗⊕ v⃗)⊕ w⃗. The seven
other vector space properties may also be verified, so C is an example of a vector space.

Remark 3.5.9 The following sets are just a few examples of vector spaces, with the usual/
natural operations for addition and scalar multiplication.

• Rn: Euclidean vectors with n components.

• C: Complex numbers.

• Mm,n: Matrices of real numbers with m rows and n columns.

• Pn: Polynomials of degree n or less.
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• P : Polynomials of any degree.

• C(R): Real-valued continuous functions.

Activity 3.5.10 Consider the set V = {(x, y) | y = 2x}.
Which of the following vectors is not in V ?

A. (0, 0)

B. (1, 2)

C. (2, 4)

D. (3, 8)

Activity 3.5.11 Consider the set V = {(x, y) | y = 2x} with the operation ⊕ defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2).

Let u⃗, v⃗ be in V with u⃗ = (1, 2) and v⃗ = (2, 4). Using the operations defined for V , which
of the following is u⃗⊕ v⃗?

A. (2, 6)

B. (2, 8)

C. (3, 6)

D. (3, 8)

Activity 3.5.12 Consider the set V = {(x, y) | y = 2x} with operations ⊕,� defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c� (x, y) = (cx, yc).

Let a = 2, b = −3 be scalars and u⃗ = (1, 2) ∈ V .

(a) Verify that

(a+ b)� u⃗ =

(
−1,

1

2

)
.

(b) Compute the value of
(a� u⃗)⊕ (b� u⃗) .

Activity 3.5.13 Consider the set V = {(x, y) | y = 2x} with operations ⊕,� defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c� (x, y) = (cx, yc).

Let a, b be unspecified scalars in R and u⃗ = (x, y) be an unspecified vector in V .
(a) Show that both sides of the equation

(a+ b)� (x, y) = (a� (x, y))⊕ (b� (x, y))

simplify to the expression (ax+ bx, yayb).

(b) Show that V contains an additive identity element z⃗ = ( ? , ? ) satisfying

(x, y)⊕ ( ? , ? ) = (x, y)

for all (x, y) ∈ V .
That is, pick appropriate values for z⃗ = ( ? , ? ) and then simplify (x, y)⊕ ( ? , ? ) into
just (x, y).



CHAPTER 3. ALGEBRAIC PROPERTIES OF LINEAR MAPS (AT) 109

(c) Is V a vector space?

A. Yes
B. No
C. More work is required

Remark 3.5.14 It turns out V = {(x, y) | y = 2x} with operations ⊕,� defined by

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1y2) c� (x, y) = (cx, yc)

satisifes all eight properties from Definition 3.5.7.
Thus, V is a vector space.

Activity 3.5.15 Let V = {(x, y) |x, y ∈ R} have operations defined by

(x1, y1)⊕ (x2, y2) = (x1 + y1 + x2 + y2, x
2
1 + x2

2)

c� (x, y) = (xc, y + c− 1).

(a) Show that 1 is the scalar multiplication identity element by simplifying 1 � (x, y) to
(x, y).

(b) Show that V does not have an additive identity element z⃗ = (z, w) by showing that
(0,−1)⊕ (z, w) 6= (0,−1) no matter what the values of z, w are.

(c) Is V a vector space?

A. Yes
B. No
C. More work is required

Activity 3.5.16 Let V = {(x, y) |x, y ∈ R} have operations defined by
(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + 3y2) c� (x, y) = (cx, cy).

(a) Show that scalar multiplication distributes over vector addition, i.e.
c� ((x1, y1)⊕ (x2, y2)) = c� (x1, y1)⊕ c� (x2, y2)

for all c ∈ R, (x1, y1), (x2, y2) ∈ V .

(b) Show that vector addition is not associative, i.e.
(x1, y1)⊕ ((x2, y2)⊕ (x3, y3)) 6= ((x1, y1)⊕ (x2, y2))⊕ (x3, y3)

for some vectors (x1, y1), (x2, y2), (x3, y3) ∈ V .

(c) Is V a vector space?

A. Yes
B. No
C. More work is required
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3.5.3 Cooldown
Activity 3.5.17

(a) What are some objects that are important to you personally, academically, or otherwise
that appear vector-like to you? What makes them feel vector-like? Which axiom for
vector spaces does not hold for these objects, if any.

(b) Our vector space axioms have eight properties. While these eight properties are enough
to capture vectors, the objects that we study in the real-world often have additional
structures not captured by these axioms. What are some structures that you have
encountered in other classes, or in previous experiences, that are not captured by these
eight axioms?

3.5.4 Videos

Standalone

Figure 37 Video: Verifying that a vector space property holds

Standalone

Figure 38 Video: Showing something is not a vector space

https://tbil.org/video-AT5-1.html
https://tbil.org/video-AT5-2.html


CHAPTER 3. ALGEBRAIC PROPERTIES OF LINEAR MAPS (AT) 111

3.5.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/AT5/.

3.5.6 Mathematical Writing Explorations
Exploration 3.5.18

• Show that R+, the set of positive real numbers, is a vector space, but where x ⊕ y
really means the product (so 2⊕ 3 = 6), and where scalar multiplication α � x really
means xα. Yes, you really do need to check all of the properties, but this is the only
time I’ll make you do so. Remember, examples aren’t proofs, so you should start with
arbitrary elements of R+ for your vectors. Make sure you’re careful about telling the
reader what α means.

• Prove that the additive identity z⃗ in an arbitrary vector space is unique.

• Prove that additive inverses are unique. Assume you have a vector space V and some
v⃗ ∈ V . Further, assume w⃗1, w⃗2 ∈ V with v⃗ ⊕ w⃗1 = v⃗ ⊕ w⃗2 = z⃗. Prove that w⃗1 = w⃗2.

Exploration 3.5.19 Consider the vector space of polynomials, Pn. Suppose further that
n = ab, where a and b are each positive integers. Conjecture a relationship between Ma,b

and Pn. We will investigate this further in section Section 3.6

3.5.7 Sample Problem and Solution
Sample problem Example B.1.16.

3.6 Polynomial and Matrix Spaces (AT6)

Learning Outcomes
• Answer questions about vector spaces of polynomials or matrices.

3.6.1 Warm Up

https://tbil.org/linear-algebra/preview/exercises/#/bank/AT5/
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Activity 3.6.1 Consider the following vector equation and statements about it:

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = w⃗

1. The above vector equation is consistent for every choice of w⃗.

2. When the right hand is equal to 0⃗, the equation has a unique solution.

3. The given equation always has a unique solution, no matter what w⃗ is.

Which, if any, of these statements make sense if we no longer assume that the vectors
v⃗1, . . . , v⃗n are Euclidean vectors, but rather elements of a vector space?

3.6.2 Class Activities
Observation 3.6.2 Nearly every term we’ve defined for Euclidean vector spaces Rn was
actually defined for all kinds of vector spaces:

• Definition 2.1.3

• Definition 2.1.4

• Definition 2.3.7

• Definition 2.4.3

• Definition 2.5.5

• Definition 3.1.3

• Definition 3.1.4

• Definition 3.3.3

• Definition 3.3.8

• Definition 3.4.2

• Definition 3.4.5

• Definition 3.4.12
Activity 3.6.3 Let V be a vector space with the basis {v⃗1, v⃗2, v⃗3}. Which of these completes
the following definition for a bijective linear map T : V → R3?

T (v⃗) = T (av⃗1 + bv⃗2 + cv⃗3) =

 ?
?
?



A.

 0
0
0

 B.

 a+ b+ c
0
0

 C.

 a
b
c


Fact 3.6.4 Every vector space with finite dimension, that is, every vector space V with a
basis of the form {v⃗1, v⃗2, . . . , v⃗n} has a linear bijection T with Euclidean space Rn that simply
swaps its basis with the standard basis {e⃗1, e⃗2, . . . , e⃗n} for Rn:

T (c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n) = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n =


c1
c2
...
cn


This transformation (in fact, any linear bijection between vector spaces) is called an isomor-
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phism, and V is said to be isomorphic to Rn.
Note, in particular, that every vector space of dimension n is isomorphic to Rn.

Activity 3.6.5 The matrix space M2,2 =

{[
a b
c d

]∣∣∣∣a, b, c, d ∈ R
}

has the basis

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

(a) What is the dimension of M2,2?

A. 2
B. 3

C. 4
D. 5

(b) Which Euclidean space is M2,2 isomorphic to?

A. R2

B. R3

C. R4

D. R5

(c) Describe an isomorphism T : M2,2 → R ? :

T

([
a b
c d

])
=


?

...

?


Activity 3.6.6 The polynomial space P4 = {a+ bx+ cx2 + dx3 + ex4|a, b, c, d, e ∈ R} has
the basis {

1, x, x2, x3, x4
}

.

(a) What is the dimension of P4?

A. 2
B. 3

C. 4
D. 5

(b) Which Euclidean space is P4 isomorphic to?

A. R2

B. R3

C. R4

D. R5
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(c) Describe an isomorphism T : P4 → R ? :

T
(
a+ bx+ cx2 + dx3 + ex4

)
=


?

...

?


Remark 3.6.7 Since any finite-dimensional vector space is isomorphic to a Euclidean space
Rn, one approach to answering questions about such spaces is to answer the corresponding
question about Rn.

Activity 3.6.8 Consider how to construct the polynomial x3 + x2 + 5x + 1 as a linear
combination of polynomials from the set{

x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5
}

.

(a) Describe the vector space involved in this problem, and an isomorphic Euclidean space
and relevant Eucldean vectors that can be used to solve this problem.

(b) Show how to construct an appropriate Euclidean vector from an approriate set of
Euclidean vectors.

(c) Use this result to answer the original question.

Observation 3.6.9 The space of polynomials P (of any degree) has the basis
{1, x, x2, x3, . . . }, so it is a natural example of an infinite-dimensional vector space.

Since P and other infinite-dimensional vector spaces cannot be treated as an isomor-
phic finite-dimensional Euclidean space Rn, vectors in such vector spaces cannot be studied
by converting them into Euclidean vectors. Fortunately, most of the examples we will be
interested in for this course will be finite-dimensional.

3.6.3 Individual Practice

Activity 3.6.10 Let A =


−2 −1 1
1 0 0
0 −4 −2
0 1 3

 and let T : R3 → R4 denote the corresponding

linear transformation. Note that

RREF(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 .

The following statements are all invalid for at least one reason. Determine what makes them
invalid and, suggest alternative valid statements that the author may have meant instead.

(a) The matrix A is injective because RREF(A) has a pivot in each column.
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(b) The matrix A does not span R4 because RREF(A) has a row of zeroes.

(c) The transformation T does not span R4.

(d) The transformation T is linearly independent.

3.6.4 Videos

Standalone

Figure 39 Video: Polynomial and matrix calculations

3.6.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/AT6/.

3.6.6 Mathematical Writing Explorations
Exploration 3.6.11 Given a matrix M

• the span of the set of all columns is the column space

• the span of the set of all rows is the row space

• the rankof a matrix is the dimension of the column space.

Calculate the rank of these matrices.

•

 2 1 3
1 −1 2
1 0 3


•

 1 −1 2 3
3 −3 6 3
−2 2 4 5


•

 1 3 2
5 1 1
6 4 3



https://tbil.org/video-AT6.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/AT6/
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•

 0 0 0
0 0 0
0 0 0


Exploration 3.6.12 Calculate a basis for the row space and a basis for the column space

of the matrix


2 0 3 4
0 1 1 −1
3 1 0 2
10 −4 −1 −1

.

Exploration 3.6.13 If you are given the values of a, b, and c, what value of d will cause the
matrix

[
a b
c d

]
to have rank 1?

3.6.7 Sample Problem and Solution
Sample problem Example B.1.17.



Chapter 4

Matrices (MX)

Learning Outcomes
What algebraic structure do matrices have?
By the end of this chapter, you should be able to...

1. Multiply matrices.

2. Determine if a matrix is invertible, and if so, compute its inverse.

3. Invert an appropriate matrix to solve a system of linear equations.

4. Express row operations through matrix multiplication.

Readiness Assurance. Before beginning this chapter, you should be able to...

1. Compose functions of real numbers.

• Review: Khan Academy1

2. Identify the domain and codomain of linear transformations.

• Review: YouTube2

3. Find the matrix corresponding to a linear transformation and compute the image of a
vector given a standard matrix.

• Review: Section 3.2

4. Determine if a linear transformation is injective and/or surjective.

• Review: Section 3.4

5. Interpret the ideas of injectivity and surjectivity in multiple ways.
1www.khanacademy.org/math/precalculus/composite/composing/v/function-composition
2www.youtube.com/watch?v=BQMyeQOLvpg
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https://www.khanacademy.org/math/precalculus/composite/composing/v/function-composition
https://www.youtube.com/watch?v=BQMyeQOLvpg
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• Review: YouTube3

4.1 Matrices and Multiplication (MX1)

Learning Outcomes
• Multiply matrices.

4.1.1 Warm Up
Activity 4.1.1 Suppose that T : V → W is a linear transformation.

(a) What is the definition of kerT? How does it relate to the codomain of T?

(b) What is definition of ImT? How does it relate to the codomain of T?

4.1.2 Class Activities
Observation 4.1.2 If T : Rn → Rm and S : Rm → Rk are linear maps, then the composition
map S ◦ T computed as (S ◦ T )(v⃗) = S(T (v⃗)) is a linear map from Rn → Rk.

Rn Rm Rk

S◦T

T S

Figure 40 The composition of two linear maps.

Activity 4.1.3 Let T : R3 → R2 be defined by the 2×3 standard matrix B and S : R2 → R4

be defined by the 4× 2 standard matrix A:

B =

[
2 1 −3
5 −3 4

]
A =


1 2
0 1
3 5
−1 −2

 .

(a) What are the domain and codomain of the composition map S ◦ T?
3www.youtube.com/watch?v=WpUv72Y6Dl0

https://www.youtube.com/watch?v=WpUv72Y6Dl0
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A. The domain is R3 and the codomain
is R2

B. The domain is R2 and the codomain
is R4

C. The domain is R3 and the codomain
is R4

D. The domain is R4 and the codomain
is R3

(b) What size will the standard matrix of S ◦ T be?

A. 4 (rows) × 3 (columns)
B. 3 (rows) × 4 (columns)

C. 3 (rows) × 2 (columns)
D. 2 (rows) × 4 (columns)

(c) Compute

(S ◦ T )(e⃗1) = S(T (e⃗1)) = S

([
2
5

])
=


?
?
?
?

 .

(d) Compute (S ◦ T )(e⃗2).

(e) Compute (S ◦ T )(e⃗3).

(f) Use (S ◦ T )(e⃗1), (S ◦ T )(e⃗2), (S ◦ T )(e⃗3) to write the standard matrix for S ◦ T .

Definition 4.1.4 We define the product AB of a m × n matrix A and a n × k matrix B
to be the m × k standard matrix of the composition map of the two corresponding linear
functions.

For the previous activity, T was a map R3 → R2, and S was a map R2 → R4, so S ◦ T
gave a map R3 → R4 with a 4× 3 standard matrix:

AB =


1 2
0 1
3 5
−1 −2

[ 2 1 −3
5 −3 4

]

= [(S ◦ T )(e⃗1) (S ◦ T )(e⃗2) (S ◦ T )(e⃗3)] =


12 −5 5
5 −3 4
31 −12 11
−12 5 −5

 .

♢

Activity 4.1.5 Let S : R3 → R2 be given by the matrix A =

[
−4 −2 3
0 1 1

]
and T : R2 →

R3 be given by the matrix B =

 2 3
1 −1
0 −1

.

(a) Write the dimensions (rows × columns) for A, B, AB, and BA.
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(b) Find the standard matrix AB of S ◦ T .

(c) Find the standard matrix BA of T ◦ S.

Activity 4.1.6 Consider the following three matrices.

A =

[
1 0 −3
3 2 1

]
B =


2 2 1 0 1
1 1 1 −1 0
0 0 3 2 1
−1 5 7 2 1

 C =


2 2
0 −1
3 1
4 0


(a) Find the domain and codomain of each of the three linear maps corresponding to A,

B, and C.

(b) Only one of the matrix products AB,AC,BA,BC,CA,CB can actually be computed.
Compute it.

Activity 4.1.7 Let B =

 3 −4 0
2 0 −1
0 −3 3

, and let A =

 2 7 −1
0 3 2
1 1 −1

.

(a) Compute the product BA by hand.

(b) Check your work using technology. Using Octave:

B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
B*A

B = [3 -4 0 ; 2 0 -1 ; 0 -3 3]
A = [2 7 -1 ; 0 3 2 ; 1 1 -1]
B*A

Activity 4.1.8 Of the following three matrices, only two may be multiplied.

A =

[
−1 3 −2 −3
1 −4 2 3

]
B =

[
1 −6 −1
0 1 0

]
C =


1 −1 −1
0 1 −2
−2 4 −1
−2 3 −1


Explain which two can be multiplied and why. Then show how to find their product.
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Activity 4.1.9 Let T

([
x
y

])
=


x+ 2y

y
3x+ 5y
−x− 2y

 In Fact 3.2.11 we adopted the notation

T

([
x
y

])
=


x+ 2y

y
3x+ 5y
−x− 2y

 = A

[
x
y

]
=


1 2
0 1
3 5
−1 −2

[ x
y

]
.

Verify that


1 2
0 1
3 5
−1 −2

[ x
y

]
=


x+ 2y

y
3x+ 5y
−x− 2y

 in terms of matrix multiplication.

4.1.3 Individual Practice
Activity 4.1.10 Given two n × n matrices A and B, explain why the sentence ”Multiply
the matrices A and B together.” is ambiguous. How could you re-write the sentence in order
to eliminate the ambiguity?

4.1.4 Videos

Standalone

Figure 41 Video: Multiplying matrices

4.1.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/MX1/.

https://tbil.org/video-MX1.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/MX1/
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4.1.6 Mathematical Writing Explorations
Exploration 4.1.11 Construct 3 matrices, A,B, and C, such that

• AB : R4 → R2

• BC : R2 → R3

• CA : R3 → R4.

• ABC : R2 → R2

Exploration 4.1.12 Construct 3 examples of matrix multiplication, with all matrix dimen-
sions at least 2.

• Where A and B are not square, but AB is square.

• Where AB = BA.

• Where AB 6= BA.
Exploration 4.1.13 Use the included map in this problem.

A

B

C

D E

Figure 42 Adjacency map, showing roads between 5 cities

• An adjacency matrix for this map is a matrix that has the number of roads from
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city i to city j in the (i, j) entry of the matrix. A road is a path of length exactly
1. All (i, i)entries are 0. Write the adjacency matrix for this map, with the cities in
alphabetical order.

• What does the square of this matrix tell you about the map? The cube? The n-th
power?

4.1.7 Sample Problem and Solution
Sample problem Example B.1.18.

4.2 The Inverse of a Matrix (MX2)

Learning Outcomes
• Determine if a matrix is invertible, and if so, compute its inverse.

4.2.1 Warm Up
Activity 4.2.1 Consider the matrices:

A =

[
1 5 −1
0 3 2

]
, B =

 7 2 −1 1
0 3 2 −2
1 1 −1 −3

 .

Without using technology, what is the third column of the product AB?

4.2.2 Class Activities

Activity 4.2.2 Let A =

 2 7 −1
0 3 2
1 1 −1

. Find a 3× 3 matrix B such that BA = A, that is,

 ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1


Check your guess using technology.

Definition 4.2.3 The identity matrix In (or just I when n is obvious from context) is the
n× n matrix

In =


1 0 · · · 0

0 1
. . . ...

... . . . . . . 0
0 · · · 0 1

 .
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It has a 1 on each diagonal element and a 0 in every other position. ♢
Fact 4.2.4 For any square matrix A, IA = AI = A: 1 0 0

0 1 0
0 0 1

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
1 1 −1

 1 0 0
0 1 0
0 0 1

 =

 2 7 −1
0 3 2
1 1 −1


Activity 4.2.5 Let T : Rn → Rm be a linear map with standard matrix A. Sort the
following items into three groups of statements: a group that means T is injective, a group
that means T is surjective, and a group that means T is bijective.

A. T (x⃗) = b⃗ has a solution for all b⃗ ∈ Rm

B. T (x⃗) = b⃗ has a unique solution for all b⃗ ∈ Rm

C. T (x⃗) = 0⃗ has a unique solution.

D. The columns of A span Rm

E. The columns of A are linearly independent

F. The columns of A are a basis of Rm

G. Every column of RREF(A) has a pivot

H. Every row of RREF(A) has a pivot

I. m = n and RREF(A) = I

Definition 4.2.6 Let T : Rn → Rn be a linear bijection with standard matrix A.
By item (B) from Activity 4.2.5 we may define an inverse map T−1 : Rn → Rn that

defines T−1(⃗b) as the unique solution x⃗ satisfying T (x⃗) = b⃗, that is, T (T−1(⃗b)) = b⃗.
Furthermore, let

A−1 = [T−1(e⃗1) · · · T−1(e⃗n)]

be the standard matrix for T−1. We call A−1 the inverse matrix of A, and we also say that
A is an invertible matrix. ♢
Activity 4.2.7 Let T : R3 → R3 be the linear bijection given by the standard matrix

A =

 2 −1 −6
2 1 3
1 1 4

.

(a) To find x⃗ = T−1(e⃗1), we need to find the unique solution for T (x⃗) = e⃗1. Which of these
linear systems can be used to find this solution?
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A.
2x1 −1x2 −6x3 = x1

2x1 +1x2 +3x3 = 0
1x1 +1x2 +4x3 = 0

B.
2x1 −1x2 −6x3 = x1

2x1 +1x2 +3x3 = x2

1x1 +1x2 +4x3 = x3

C.
2x1 −1x2 −6x3 = 1
2x1 +1x2 +3x3 = 0
1x1 +1x2 +4x3 = 0

D.
2x1 −1x2 −6x3 = 1
2x1 +1x2 +3x3 = 1
1x1 +1x2 +4x3 = 1

(b) Use that system to find the solution x⃗ = T−1(e⃗1) for T (x⃗) = e⃗1.

(c) Similarly, solve T (x⃗) = e⃗2 to find T−1(e⃗2), and solve T (x⃗) = e⃗3 to find T−1(e⃗3).

(d) Use these to write
A−1 = [T−1(e⃗1) T−1(e⃗2) T−1(e⃗3)],

the standard matrix for T−1.
Activity 4.2.8 Find the inverse A−1 of the matrix

A =


0 0 0 −1
1 0 −1 −4
1 1 0 −4
1 −1 −1 2


by computing how it transforms each of the standard basis vectors for R4: T−1(e⃗1), T−1(e⃗2),
T−1(e⃗3), and T−1(e⃗4).

Activity 4.2.9 Is the matrix

 2 3 1
−1 −4 2
0 −5 5

 invertible?

A. Yes, because its transformation is a bijection.

B. Yes, because its transformation is not a bijection.

C. No, because its transformation is a bijection.

D. No, because its transformation is not a bijection.

Observation 4.2.10 An n× n matrix A is invertible if and only if RREF(A) = In.

Activity 4.2.11 Let T : R2 → R2 be the bijective linear map defined by T

([
x
y

])
=[

2x− 3y
−3x+ 5y

]
, with the inverse map T−1

([
x
y

])
=

[
5x+ 3y
3x+ 2y

]
.

(a) Compute (T−1 ◦ T )
([

−2
1

])
.

(b) If A is the standard matrix for T and A−1 is the standard matrix for T−1, find the
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2× 2 matrix
A−1A =

[
? ?
? ?

]
.

Observation 4.2.12 T−1 ◦T = T ◦T−1 is the identity map for any bijective linear transfor-
mation T . Therefore A−1A = AA−1 equals the identity matrix I for any invertible matrix
A.

4.2.3 Individual Practice
Activity 4.2.13 Now that we have defined the inverse of a matrix, we have the ability to
solve matrix equations. In the following equations, A,B all denote square matrices of the
same size and I denotes the identity matrix. For each equation, solve for X.

(a) A−1XA = B

(b) AXA−1 = B

(c) ABX = I

(d) BAX = I

4.2.4 Videos

Standalone

Figure 43 Video: Invertible matrices

https://tbil.org/video-MX2-1.html


CHAPTER 4. MATRICES (MX) 127

Standalone

Figure 44 Video: Finding the inverse of a matrix

4.2.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/MX2/.

4.2.6 Mathematical Writing Explorations
Exploration 4.2.14 Assume A is an n×n matrix. Prove the following are equivalent. Some
of these results you have proven previously.

• A row reduces to the identity matrix.

• For any choice of b⃗ ∈ Rn, the system of equations represented by the augmented matrix
[A|⃗b] has a unique solution.

• The columns of A are a linearly independent set.

• The columns of A form a basis for Rn.

• The rank of A is n.

• The nullity of A is 0.

• A is invertible.

• The linear transformation T with standard matrix A is injective and surjective. Such
a map is called an isomorphism.

Exploration 4.2.15

• Assume T is a square matrix, and T 4 is the zero matrix. Prove that (I − T )−1 =
I + T + T 2 + T 3. You will need to first prove a lemma that matrix multiplication
distributes over matrix addition.

• Generalize your result to the case where T n is the zero matrix.

https://tbil.org/video-MX2-2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/MX2/
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4.2.7 Sample Problem and Solution
Sample problem Example B.1.19.

4.3 Solving Systems with Matrix Inverses (MX3)

Learning Outcomes
• Invert an appropriate matrix to solve a system of linear equations.

4.3.1 Warm Up
Activity 4.3.1 Which of the following matrices is invertible? Find the inverse for the one
that is invertible.

A.

 1 −1 0
−1 1 0
1 0 1



B.

 1 −1 3
−1 1 −1
1 0 −2


4.3.2 Class Activities
Activity 4.3.2 Consider the following linear system with a unique solution:

3x1 − 2x2 − 2x3 − 4x4 = −7
2x1 − x2 − x3 − x4 = −1
−x1 + x3 = −1

− x2 − 2x4 = −5

(a) Suppose we let

T



x1

x2

x3

x4


 =


3x1 − 2x2 − 2x3 − 4x4

2x1 − x2 − x3 − x4

−x1 + x3

− x2 − 2x4

 .

Which of these choices would help us solve the given system?

A. Compute T



−7
−1
−1
−5
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B. Find


x1

x2

x3

x4

 where T



x1

x2

x3

x4


 =


−7
−1
−1
−5


(b) How can we express this in terms of matrix multiplication?

A.


3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2



x1

x2

x3

x4

 =


−7
−1
−1
−5



B.


x1

x2

x3

x4

 =


3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2



−7
−1
−1
−5



C.


x1

x2

x3

x4




3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2

 =


−7
−1
−1
−5



D.


x1

x2

x3

x4

 =


−7
−1
−1
−5




3 −2 −2 −4
2 −1 −1 −1
−1 0 1 0
0 −1 0 −2


(c) How could a matrix equation of the form Ax⃗ = b⃗ be solved for x⃗?

A. Multiply: (RREFA)(Ax⃗) = (RREFA)⃗b

B. Add: (RREFA) + Ax⃗ = (RREFA) + b⃗

C. Multiply: (A−1)(Ax⃗) = (A−1)⃗b

D. Add: (A−1) + Ax⃗ = (A−1) + b⃗

(d) Find


x1

x2

x3

x4

 using the method you chose in (c).

Remark 4.3.3 The linear system described by the augmented matrix [A | b⃗] has exactly the
same solution set as the matrix equation Ax⃗ = b⃗.

When A is invertible, then we have both [A | b⃗] ∼ [I | x⃗] and x⃗ = A−1⃗b, which can be
seen as

Ax⃗ = b⃗

⇒ A−1Ax⃗ = A−1⃗b
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⇒ x⃗ = A−1⃗b

Activity 4.3.4 Consider the vector equation

x1

 1
2
−2

+ x2

 −2
−3
3

+ x3

 1
4
−3

 =

 −3
5
−1


with a unique solution.

(a) Explain and demonstrate how this problem can be restated using matrix multiplication.

(b) Use the properties of matrix multiplication to find the unique solution.

4.3.3 Individual Practice
Activity 4.3.5 Solving linear systems using matrix multiplication is most useful when we
are working with one common coefficient matrix, and varying the right-hand side. That is,
when we have Ax⃗ = b⃗ for several different values of b⃗.

In the following, let A =

2 −1 −6
2 1 3
1 1 4

 and consider the following questions about various

equations of the form Ax⃗ = b⃗?

(a) Suppose that b⃗ =

11
1

. If asked to solve the equation Ax⃗ = b⃗, which of the following

approaches do you prefer?

A. Calculate RREF[A|⃗b].
B. Calculate A−1 and then compute x⃗ = A−1⃗b

(b) Suppose that b⃗1, b⃗2, b⃗3 =

11
1

 ,

21
3

 ,

−1
3
5

. If asked to solve each of the equations

Ax⃗ = b⃗1, Ax⃗ = b⃗2, Ax⃗ = b⃗3, which of the following approaches do you prefer?

A. Calculate RREF[A|⃗b1], RREF[A|⃗b2], and RREF[A|⃗b3]
B. Calculate A−1 and then compute x⃗ = A−1⃗b1, x⃗ = A−1⃗b2, and x⃗ = A−1⃗b3

(c) Suppose that b⃗1, . . . , b⃗10 are 10 distinct vectors. If asked to solve each of the equations
Ax⃗ = b⃗1, . . . , Ax⃗ = b⃗10, which of the following approaches do you prefer?

A. Calculate RREF[A|⃗b1], ... RREF[A|⃗b10].
B. Calculate A−1 and then compute x⃗ = A−1⃗b1, ... x⃗ = A−1⃗b10.
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4.3.4 Videos
Video coming soon to this YouTube playlist1.

4.3.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/MX3/.

4.3.6 Mathematical Writing Explorations
Exploration 4.3.6 Use row reduction to find the inverse of the following general matrix.
Give conditions on which this inverse exists. 1 b c

d e f
g h i


Exploration 4.3.7 Assume that H is invertible, and that HG is the zero matrix. Prove
that G must be the zero matrix. Would this still be true if H were not invertible?
Exploration 4.3.8 If H is invertible and r ∈ R, what is the inverse of rH?

Exploration 4.3.9 If H and G are invertible, is H−1 +G−1 = (H +G)−1?

Exploration 4.3.10 Prove that if A, P , and Q are invertible with PAQ = I, then A−1 =
QP .

4.3.7 Sample Problem and Solution
Sample problem Example B.1.20.

4.4 Row Operations as Matrix Multiplication (MX4)

Learning Outcomes
• Express row operations through matrix multiplication.

4.4.1 Warm Up
Activity 4.4.1 Given a linear transformation T , how did we define its standard matrix A?
How do we compute the standard matrix A from T?

1www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj

https://www.youtube.com/watch?v=kpOK7RhFEiQ&list=PLwXCBkIf7xBMo3zMnD7WVt39rANLlSdmj
https://tbil.org/linear-algebra/preview/exercises/#/bank/MX3/
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4.4.2 Class Activities
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Activity 4.4.2 Tweaking the identity matrix slightly allows us to write row operations in
terms of matrix multiplication.

(a) Which of these tweaks of the identity matrix yields a matrix that doubles the third
row of A when left-multiplying? (2R3 → R3) ? ? ?

? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
0 3 2
2 2 −2



A.

 2 0 0
0 1 0
0 0 1


B.

 1 0 0
0 2 0
0 0 1


C.

 1 0 0
0 1 0
0 0 2


D.

 2 0 0
0 2 0
0 0 2


(b) Which of these tweaks of the identity matrix yields a matrix that swaps the first and

third rows of A when left-multiplying? (R1 ↔ R3) ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 7 −1
1 1 −1
0 3 2



A.

 1 0 0
0 0 1
0 1 0


B.

 0 1 0
0 0 1
1 0 0


C.

 0 0 1
0 1 0
1 0 0


D.

 0 1 0
1 0 0
0 0 1


(c) Which of these tweaks of the identity matrix yields a matrix that adds 5 times the

third row of A to the first row when left-multiplying? (R1 + 5R3 → R1) ? ? ?
? ? ?
? ? ?

 2 7 −1
0 3 2
1 1 −1

 =

 2 + 5(1) 7 + 5(1) −1 + 5(−1)
0 3 2
1 1 −1



A.

 1 0 1
0 1 0
0 0 5


B.

 1 0 5
0 1 0
0 0 1


C.

 5 5 5
0 1 0
0 0 1


D.

 1 0 5
0 1 0
0 0 5
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Fact 4.4.3 If R is the result of applying a row operation to I, then RA is the result of
applying the same row operation to A.

• Scaling a row: R =

 c 0 0
0 1 0
0 0 1



• Swapping rows: R =

 0 1 0
1 0 0
0 0 1



• Adding a row multiple to another row: R =

 1 0 c
0 1 0
0 0 1


Such matrices can be chained together to emulate multiple row operations. In particular,

RREF(A) = Rk . . . R2R1A

for some sequence of matrices R1, R2, . . . , Rk.
Activity 4.4.4 What would happen if you right-multiplied by the tweaked identity matrix
rather than left-multiplied?

A. The manipulated rows would be reversed.

B. Columns would be manipulated instead of rows.

C. The entries of the resulting matrix would be rotated 180 degrees.
Activity 4.4.5 Consider the two row operations R2 ↔ R3 and R1 + R2 → R1 applied as
follows to show A ∼ B:

A =

 −1 4 5
0 3 −1
1 2 3

 ∼

 −1 4 5
1 2 3
0 3 −1


∼

 −1 + 1 4 + 2 5 + 3
1 2 3
0 3 −1

 =

 0 6 8
1 2 3
0 3 −1

 = B

Express these row operations as matrix multiplication by expressing B as the product of two
matrices and A:

B =

 ? ? ?
? ? ?
? ? ?

 ? ? ?
? ? ?
? ? ?

A

Check your work using technology.
Activity 4.4.6 Let A be any 4× 4 matrix.

(a) Give a 4× 4 matrix M that may be used to perform the row operation −5R2 → R2.
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(b) Give a 4× 4 matrix Y that may be used to perform the row operation R2 ↔ R3.

(c) Use matrix multiplication to describe the matrix obtained by applying −5R2 → R2

and then R2 ↔ R3 to A (note the order).

4.4.3 Individual Practice

Activity 4.4.7 Consider the matrix A =

 2 6 −1 6
1 3 −1 2
−1 −3 2 0

. Illustrate Fact 4.4.3 by finding

row operation matrices R1, . . . , Rk for which

RREF(A) = Rk · · ·R2R1A.

If you and a teammate were to do this independently, would you necessarily come up with
the same sequence of matrices R1, . . . , Rk?

4.4.4 Videos

Standalone

Figure 45 Video: Row operations as matrix multiplication

4.4.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/MX4/.

4.4.6 Sample Problem and Solution
Sample problem Example B.1.21.

https://tbil.org/video-MX4.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/MX4/


Chapter 5

Geometric Properties of Linear Maps
(GT)

Learning Outcomes
How do we understand linear maps geometrically?
By the end of this chapter, you should be able to...

1. Describe how a row operation affects the determinant of a matrix.

2. Compute the determinant of a 4× 4 matrix.

3. Find the eigenvalues of a 2× 2 matrix.

4. Find a basis for the eigenspace of a 4× 4 matrix associated with a given eigenvalue.

Readiness Assurance. Before beginning this chapter, you should be able to...

1. Calculate the area of a parallelogram.

• Review: Khan Academy1

2. Recall and use the definition of a linear transformation.

• Review: Section 3.1

3. Find the matrix corresponding to a linear transformation of Euclidean spaces.

• Review: Section 3.2

4. Find all roots of quadratic polynomials (including complex ones).
1www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-geometry-topic/

cc-6th-parallelogram-area/v/intuition-for-area-of-a-parallelogram

136

https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-geometry-topic/cc-6th-parallelogram-area/v/intuition-for-area-of-a-parallelogram
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• Review: Khan Academy2, YouTube (1)3, YouTube (2)4

5. Interpret the statement “A is an invertible matrix” in many equivalent ways in different
contexts.

• Review: Section 4.3

5.1 Row Operations and Determinants (GT1)

Learning Outcomes
• Describe how a row operation affects the determinant of a matrix.

5.1.1 Warm Up
Activity 5.1.1 Consider the linear transformation T : R2 → R2 corresponding to the stan-
dard matrix A =

[
1 3
−1 2

]
.

(a) Draw a figure that depicts how T transforms the unit square.

(b) What geometric features of the unit square were preserved by the transformation?
Which geometric features changed?

5.1.2 Class Activities
Activity 5.1.2 The image in Figure 46 illustrates how the linear transformation T : R2 → R2

given by the standard matrix A =

[
2 0
0 3

]
transforms the unit square.

2www.khanacademy.org/math/algebra-home/alg-polynomials/alg-factoring-polynomials-quadratic-forms/
v/factoring-trinomials-by-grouping-5

3youtu.be/Aa-v1EK7DR4
4www.youtube.com/watch?v=2yBhDsNE0w

https://www.khanacademy.org/math/algebra-home/alg-polynomials/alg-factoring-polynomials-quadratic-forms/v/factoring-trinomials-by-grouping-5
https://youtu.be/Aa-v1EK7DR4
https://www.youtube.com/watch?v=2yBhDsNE0w
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Ae⃗1 =

[
2
0

]
Ae⃗2 =

[
0
3

]

Figure 46 Transformation of the unit square by the matrix A.

(a) What are the lengths of Ae⃗1 and Ae⃗2?

(b) What is the area of the transformed unit square?

Activity 5.1.3 The image below illustrates how the linear transformation S : R2 → R2

given by the standard matrix B =

[
2 3
0 4

]
transforms the unit square.
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Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

Figure 47 Transformation of the unit square by the matrix B

(a) What are the lengths of Be⃗1 and Be⃗2?

(b) What is the area of the transformed unit square?

Observation 5.1.4 It is possible to find two nonparallel vectors that are scaled but not
rotated by the linear map given by B.

Be⃗1 =

[
2 3
0 4

] [
1
0

]
=

[
2
0

]
= 2e⃗1

B

[
3
4
1
2

]
=

[
2 3
0 4

] [
3
4
1
2

]
=

[
3
2

]
= 4

[
3
4
1
2

]
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B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 48 Certain vectors are stretched out without being rotated.
The process for finding such vectors will be covered later in this chapter.

Observation 5.1.5 Notice that while a linear map can transform vectors in various ways,
linear maps always transform parallelograms into parallelograms, and these areas are always
transformed by the same factor: in the case of B =

[
2 3
0 4

]
, this factor is 8.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 49 A linear map transforming parallelograms into parallelograms.
Since this change in area is always the same for a given linear map, it will be equal to
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the value of the transformed unit square (which begins with area 1).

Remark 5.1.6 We will define the determinant of a square matrix B, or det(B) for short,
to be the factor by which B scales areas. In order to figure out how to compute it, we first
figure out the properties it must satisfy.

Be⃗1 =

[
2
0

]

Be⃗2 =

[
3
4

]

B

[
1
0

]
= 2

[
1
0

]

B

[
3
4
1
2

]
= 4

[
3
4
1
2

]

Figure 50 The linear transformation B scaling areas by a constant factor, which we call the
determinant
Activity 5.1.7 The transformation of the unit square by the standard matrix [e⃗1 e⃗2] =[
1 0
0 1

]
= I is illustrated below. If det([e⃗1 e⃗2]) = det(I) is the area of resulting parallelo-

gram, what is the value of det([e⃗1 e⃗2]) = det(I)?
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e⃗1 =

[
1
0

]e⃗2 =

[
0
1

]

Figure 51 The transformation of the unit square by the identity matrix.
The value for det([e⃗1 e⃗2]) = det(I) is:

A. 0

B. 1

C. 2

D. 4
Activity 5.1.8 The transformation of the unit square by the standard matrix [v⃗ v⃗] is
illustrated below: both T (e⃗1) = T (e⃗2) = v⃗. If det([v⃗ v⃗]) is the area of the generated
parallelogram, what is the value of det([v⃗ v⃗])?
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v⃗

Figure 52 Transformation of the unit square by a matrix with identical columns.
The value of det([v⃗ v⃗]) is:

A. 0

B. 1

C. 2

D. 4
Activity 5.1.9

Standalone
Embed

Describe the value of det([cv⃗ w⃗]):

https://tbil.org/GT1-interactive-scale-column.html
https://tbil.org/GT1-interactive-scale-column-if.html
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A. det([v⃗ w⃗])

B. c det([v⃗ w⃗])

C. c2 det([v⃗ w⃗])

D. Cannot be determined from this infor-
mation.

Activity 5.1.10

Standalone
Embed

Describe the value of det([u⃗+ v⃗ w⃗]).

A. det([u⃗ w⃗]) = det([v⃗ w⃗])

B. det([u⃗ w⃗]) + det([v⃗ w⃗])

C. det([u⃗ w⃗]) det([v⃗ w⃗])

D. Cannot be determined from this infor-
mation.

Definition 5.1.11 The determinant is the unique function det : Mn,n → R satisfying these
properties:

1. det(I) = 1

2. det(A) = 0 whenever two columns of the matrix are identical.

3. det[· · · cv⃗ · · · ] = c det[· · · v⃗ · · · ], assuming no other columns change.

4. det[· · · v⃗ + w⃗ · · · ] = det[· · · v⃗ · · · ] + det[· · · w⃗ · · · ], assuming no other columns
change.

Note that these last two properties together can be phrased as “The determinant is linear
in each column.” ♢
Observation 5.1.12 The determinant must also satisfy other properties. Consider
det([v⃗ w⃗ + cv⃗]) and det([v⃗ w⃗]).

https://tbil.org/GT1-interactive-add-column.html
https://tbil.org/GT1-interactive-add-column-if.html
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Standalone
Embed

The base of both parallelograms is v⃗, while the height has not changed, so the determinant
does not change either. This can also be proven using the other properties of the determinant:

det([v⃗ + cw⃗ w⃗]) = det([v⃗ w⃗]) + det([cw⃗ w⃗])

= det([v⃗ w⃗]) + c det([w⃗ w⃗])

= det([v⃗ w⃗]) + c · 0
= det([v⃗ w⃗])

Remark 5.1.13 Swapping columns may be thought of as a reflection, which is represented
by a negative determinant. For example, the following matrices transform the unit square
into the same parallelogram, but the second matrix reflects its orientation.

A =

[
2 3
0 4

]
detA = 8 B =

[
3 2
4 0

]
detB = −8

Ae⃗1 =

[
2
0

]

Ae⃗2 =

[
3
4

]

Be⃗2 =

[
2
0

]

Be⃗1 =

[
3
4

]

Figure 53 Reflection of a parallelogram as a result of swapping columns.
Observation 5.1.14 The fact that swapping columns multiplies determinants by a negative
may be verified by adding and subtracting columns.

det([v⃗ w⃗]) = det([v⃗ + w⃗ w⃗])

https://tbil.org/GT1-interactive-add-column-multiples.html
https://tbil.org/GT1-interactive-add-column-multiples-if.html
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= det([v⃗ + w⃗ w⃗ − (v⃗ + w⃗)])

= det([v⃗ + w⃗ − v⃗])

= det([v⃗ + w⃗ − v⃗ − v⃗])

= det([w⃗ − v⃗])

= − det([w⃗ v⃗])

Fact 5.1.15 To summarize, we’ve shown that the column versions of the three row-reducing
operations a matrix may be used to simplify a determinant in the following way:

1. Multiplying a column by a scalar multiplies the determinant by that scalar:

c det([· · · v⃗ · · · ]) = det([· · · cv⃗ · · · ])

2. Swapping two columns changes the sign of the determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = − det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column does not change the determinant:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])

Activity 5.1.16 The transformation given by the standard matrix A scales areas by 4, and
the transformation given by the standard matrix B scales areas by 3. By what factor does
the transformation given by the standard matrix AB scale areas?

B A

Figure 54 Area changing under the composition of two linear maps

A. 1

B. 7

C. 12

D. Cannot be determined
Fact 5.1.17 Since the transformation given by the standard matrix AB is obtained by applying
the transformations given by A and B, it follows that

det(AB) = det(A) det(B) = det(B) det(A) = det(BA).
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Remark 5.1.18 Recall that row operations may be produced by matrix multiplication.

• Multiply the first row of A by c:


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A

• Swap the first and second row of A:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

A

• Add c times the third row to the first row of A:


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

A

Fact 5.1.19 The determinants of row operation matrices may be computed by manipulating
columns to reduce each matrix to the identity:

• Scaling a row: det


c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = c

• Swapping rows: det


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = −1 det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = −1

• Adding a row multiple to another row: det


1 0 c 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

det


1 0 c− 1c 0
0 1 0− 0c 0
0 0 1− 0c 0
0 0 0− 0c 1

 = det(I) = 1

Activity 5.1.20 Consider the row operation R1 + 4R3 → R1 applied as follows to show
A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


1 + 4(9) 2 + 4(10) 3 + 4(11) 4 + 4(12)

5 6 7 8
9 10 11 12
13 14 15 16

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation to I =
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

(b) Find detR by comparing with the previous slide.

(c) If C ∈ M4,4 is a matrix with det(C) = −3, find

det(RC) = det(R) det(C).

Activity 5.1.21 Consider the row operation R1 ↔ R3 applied as follows to show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


9 10 11 12
5 6 7 8
1 2 3 4
13 14 15 16

 = B

(a) Find a matrix R such that B = RA, by applying the same row operation to I.

(b) If C ∈ M4,4 is a matrix with det(C) = 5, find det(RC).

Activity 5.1.22 Consider the row operation 3R2 → R2 applied as follows to show A ∼ B:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 ∼


1 2 3 4

3(5) 3(6) 3(7) 3(8)
9 10 11 12
13 14 15 16

 = B

(a) Find a matrix R such that B = RA.

(b) If C ∈ M4,4 is a matrix with det(C) = −7, find det(RC).

Activity 5.1.23 Let A be any 4× 4 matrix with determinant 2.

(a) Let B be the matrix obtained from A by applying the row operation R1 − 5R3 → R1.
What is detB?

A -4 B -2 C 2 D 10

(b) Let M be the matrix obtained from A by applying the row operation R3 ↔ R1. What
is detM?

A -4 B -2 C 2 D 10

(c) Let P be the matrix obtained from A by applying the row operation 2R4 → R4. What
is detP?

A -4 B -2 C 2 D 10
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Remark 5.1.24 Recall that the column versions of the three row-reducing operations a
matrix may be used to simplify a determinant:

1. Multiplying columns by scalars:

det([· · · cv⃗ · · · ]) = c det([· · · v⃗ · · · ])

2. Swapping two columns:

det([· · · v⃗ · · · w⃗ · · · ]) = − det([· · · w⃗ · · · v⃗ · · · ])

3. Adding a multiple of a column to another column:

det([· · · v⃗ · · · w⃗ · · · ]) = det([· · · v⃗ + cw⃗ · · · w⃗ · · · ])

Remark 5.1.25 The determinants of row operation matrices may be computed by manipu-
lating columns to reduce each matrix to the identity:

• Scaling a row:


1 0 0 0
0 c 0 0
0 0 1 0
0 0 0 0



• Swapping rows:


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0



• Adding a row multiple to another row:


1 0 0 0
0 1 c 0
0 0 1 0
0 0 0 1


Fact 5.1.26 Thus we can also use both row operations to simplify determinants:

• Multiplying rows by scalars:

det


...
cR
...

 = c det


...
R
...


• Swapping two rows:

det



...
R
...
S
...

 = − det



...
S
...
R
...
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• Adding multiples of rows/columns to other rows:

det



...
R
...
S
...

 = det



...
R + cS

...
S
...


Activity 5.1.27 Complete the following derivation for a formula calculating 2× 2 determi-
nants:

det
[
a b
c d

]
= ? det

[
1 b/a
c d

]
= ? det

[
1 b/a

c− c d− bc/a

]
= ? det

[
1 b/a
0 d− bc/a

]
= ? det

[
1 b/a
0 1

]
= ? det

[
1 0
0 1

]
= ? det I
= ?

Observation 5.1.28 So we may compute the determinant of
[
2 4
2 3

]
by using determinant

properties to manipulate its rows/columns to reduce the matrix to I:

det
[
2 4
2 3

]
= 2 det

[
1 2
2 3

]
= 2 det

[
1 2
0 −1

]
= −2 det

[
1 −2
0 1

]
= −2 det

[
1 0
0 1

]
= −2

Or we may use a formula:

det
[
2 4
2 3

]
= (2)(3)− (4)(2) = −2
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5.1.3 Individual Practice
Activity 5.1.29 Suppose we have a linear transformation T : R2 → R2. Given some shape
S in the plane R2, we can use to T to transform it into some new shape T (S). Consider the
following questions about properties that may or may not be preserved by T .

(a) If S is a straight line segment, explain why T (S) is also a straight line segment.

(b) If S is a straight line segment, does T (S) necessarily have to have the same length as
that of S?

(c) If S is a triangle, explain why T (S) is also a triangle.

(d) Continuing as above, do the angles of T (S) necessarily have to be the same as those
of S?

5.1.4 Videos

Standalone

Figure 55 Video: Row operations, matrix multiplication, and determinants

5.1.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/GT1/.

5.1.6 Mathematical Writing Explorations
Exploration 5.1.30

• Prove or disprove. The determinant is a linear operator on the vector space of n × n
matrices.

• Find a matrix that will double the area of a region in R2.

• Find a matrix that will triple the area of a region in R2.

• Find a matrix that will halve the area of a region in R2.

https://tbil.org/video-GT1.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/GT1/
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5.1.7 Sample Problem and Solution
Sample problem Example B.1.22.

5.2 Computing Determinants (GT2)

Learning Outcomes
• Compute the determinant of a 4× 4 matrix.

5.2.1 Warm Up

Activity 5.2.1 Consider the matrix A =

[
1 2
3 4

]
.

(a) Use a combination of row and column operations to transform A into the identity
matrix. Use this to calculuate the determinant of A.

(b) Check your work using the formula for the determinant of a 2× 2 matrix.

5.2.2 Class Activities
Remark 5.2.2 We’ve seen that row reducing all the way into RREF gives us a method of
computing determinants.

However, we learned in Chapter 1 that this can be tedious for large matrices. Thus, we
will try to figure out how to turn the determinant of a larger matrix into the determinant of
a smaller matrix.
Activity 5.2.3 The following image illustrates the transformation of the unit cube by the

matrix

 1 1 0
1 3 1
0 0 1

.
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 0
1
1



 1
1
0



 1
3
0

h = 1

Figure 56 Transformation of the unit cube by the linear transformation.
Recall that for this solid V = Bh, where h is the height of the solid and B is the area of

its parallelogram base. So what must its volume be?

A. det
[
1 1
1 3

]

B. det
[
1 0
3 1

]
C. det

[
1 1
0 1

]

D. det
[
1 3
0 0

]
Fact 5.2.4 If row i contains all zeros except for a 1 on the main (upper-left to lower-right)
diagonal, then both column and row i may be removed without changing the value of the
determinant.

det


3 2 −1 3
0 1 0 0
−1 4 1 0
5 0 11 1

 = det

 3 −1 3
−1 1 0
5 11 1


Since row and column operations affect the determinants in the same way, the same

technique works for a column of all zeros except for a 1 on the main diagonal.

det


3 0 −1 5
2 1 4 0
−1 0 1 11
3 0 0 1

 = det

 3 −1 5
−1 1 11
3 0 1


Put another way, if you have either a column or row from the identity matrix, you can

cancel both the column and row containing the 1.
Warning 5.2.5 If the 1 is not on the main diagonal, you’ll need to use row or column swaps
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in order to cancel.

det


3 0 −1 5
−1 0 1 11
2 1 4 0
3 0 0 1

 = − det


3 0 −1 5
2 1 4 0
−1 0 1 11
3 0 0 1

 = − det

 3 −1 5
−1 1 11
3 0 1



Activity 5.2.6 Remove an appropriate row and column of det

 1 0 0
1 5 12
3 2 −1

 to simplify the

determinant to a 2× 2 determinant.

Activity 5.2.7 Simplify det

 0 3 −2
2 5 12
0 2 −1

 to a multiple of a 2×2 determinant by first doing

the following:

(a) Factor out a 2 from a column.

(b) Swap rows or columns to put a 1 on the main diagonal.

Activity 5.2.8 Simplify det

 4 −2 2
3 1 4
1 −1 3

 to a multiple of a 2×2 determinant by first doing

the following:

(a) Use row/column operations to create two zeroes in the same row or column.

(b) Factor/swap as needed to get a row/column of all zeroes except a 1 on the main
diagonal.

Observation 5.2.9 Using row/column operations, you can introduce zeros and reduce di-
mension to whittle down the determinant of a large matrix to a determinant of a smaller
matrix.

det


4 3 0 1
2 −2 4 0
−1 4 1 5
2 8 0 3

 = det


4 3 0 1
6 −18 0 −20
−1 4 1 5
2 8 0 3

 = det

 4 3 1
6 −18 −20
2 8 3



= · · · = −2 det

 1 3 4
0 21 43
0 −1 −10

 = −2 det
[

21 43
−1 −10

]

= · · · = −2 det
[
−167 21
0 1

]
= −2 det[−167]

= −2(−167) det(I) = 334
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Activity 5.2.10 Rewrite

det


2 1 −2 1
3 0 1 4
−2 2 3 0
−2 0 −3 −3


as a multiple of a determinant of a 3× 3 matrix.

Activity 5.2.11 Compute det


2 3 5 0
0 3 2 0
1 2 0 3
−1 −1 2 2

 by using any combination of row/column

operations.
Observation 5.2.12 Another option is to take advantage of the fact that the determinant
is linear in each row or column. This approach is called Laplace expansion or cofactor
expansion.

For example, since
[
1 2 4

]
= 1

[
1 0 0

]
+ 2

[
0 1 0

]
+ 4

[
0 0 1

]
,

det

 2 3 5
−1 3 5
1 2 4

 = 1 det

 2 3 5
−1 3 5
1 0 0

+ 2 det

 2 3 5
−1 3 5
0 1 0

+ 4 det

 2 3 5
−1 3 5
0 0 1


= −1 det

 5 3 2
5 3 −1
0 0 1

− 2 det

 2 5 3
−1 5 3
0 0 1

+ 4 det

 2 3 5
−1 3 5
0 0 1


= − det

[
5 3
5 3

]
− 2 det

[
2 5
−1 5

]
+ 4 det

[
2 3
−1 3

]
Observation 5.2.13 Recall the formula for a 2×2 determinant found in Observation 5.1.28:

det
[
a b
c d

]
= ad− bc.

There are formulas and algorithms for the determinants of larger matrices, but they can
be pretty tedious to use. For example, writing out a formula for a 4× 4 determinant would
require 24 different terms!

det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 = a11(a22(a33a44 − a43a34)− a23(a32a44 − a42a34) + . . . ) + . . .

Activity 5.2.14 Based on the previous activities, which technique is easier for computing
determinants?

A. Memorizing formulas.

B. Using row/column operations.
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C. Laplace expansion.

D. Some other technique.

Activity 5.2.15 Use your preferred technique to compute det


4 −3 0 0
1 −3 2 −1
3 2 0 3
0 −3 2 −2

.

Insight 5.2.16 You can check your answers using technology.

det([4,-3,0,0; 1,-3,2,-1; 3,2,0,3; 0,-3,2,-2])

5.2.3 Individual Practice
Activity 5.2.17 A diagonal matrix is a matrix that has zeroes in every position except
(possibly) the main upper-left to lower-right diagonal. A matrix is upper (resp. lower)
triangular if every entry below (resp. above) the main diagonal is zero.

(a) Explain why the determinant of a diagonal matrix is always equal to the product of
the entries on the main diagonal.

(b) Explain why the determinant of an upper (or lower) triangular matrix is always equal
to the product of the entries on the main diagonal.

5.2.4 Videos

Standalone

Figure 57 Video: Simplifying a determinant using row operations

https://tbil.org/video-GT2-1.html
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Standalone

Figure 58 Video: Computing a determinant

5.2.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/GT2/.

5.2.6 Mathematical Writing Explorations
Exploration 5.2.18 Prove that the equation of a line in the plane, through points

(x1, y1), (x2, y2), when x1 6= x2 is given by the equation det

 x y 1
x1 y1 1
x2 y2 1

 = 0.

Exploration 5.2.19 Show that, if an n×n matrix M has a non-zero determinant, then any
v⃗ ∈ Rn can be represented as a linear combination of the columns of M .
Exploration 5.2.20 What is the smallest number of zeros necessary to place in a 4 × 4
matrix, and the placement of those zeros, such that the matrix has a zero determinant?

5.2.7 Sample Problem and Solution
Sample problem Example B.1.23.

5.3 Eigenvalues and Characteristic Polynomials (GT3)

Learning Outcomes
• Find the eigenvalues of a 2× 2 matrix.

https://tbil.org/video-GT2-2.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/GT2/
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5.3.1 Warm Up
Activity 5.3.1 Let R : R2 → R2 be the transformation given by rotating vectors about the
origin through and angle of 45◦, and let S : R2 → R2 denote the transformation that reflects
vectors about the line x1 = x2.

(a) If L is a line, let R(L) denote the line obtained by applying R to it. Are there any
lines L for which R(L) is parallel to L?

(b) Now consider the transformation S. Are there any lines L for which S(L) is parallel
to L?

5.3.2 Class Activities
Activity 5.3.2 An invertible matrix M and its inverse M−1 are given below:

M =

[
1 2
3 4

]
M−1 =

[
−2 1
3/2 −1/2

]
Which of the following is equal to det(M) det(M−1)?

A. −1

B. 0

C. 1

D. 4

Fact 5.3.3 For every invertible matrix M ,

det(M) det(M−1) = det(I) = 1

so det(M−1) = 1
det(M)

.
Furthermore, a square matrix M is invertible if and only if det(M) 6= 0.

Observation 5.3.4 Consider the linear transformation A : R2 → R2 given by the matrix
A =

[
2 2
0 3

]
.
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Ae⃗1e⃗1

Ae⃗2

e⃗2

Figure 59 Transformation of the unit square by the linear transformation A

It is easy to see geometrically that

A

[
1
0

]
=

[
2 2
0 3

] [
1
0

]
=

[
2
0

]
= 2

[
1
0

]
.

It is less obvious (but easily checked once you find it) that

A

[
2
1

]
=

[
2 2
0 3

] [
2
1

]
=

[
6
3

]
= 3

[
2
1

]
.

Definition 5.3.5 Let A ∈ Mn,n. An eigenvector for A is a vector x⃗ ∈ Rn such that Ax⃗ is
parallel to x⃗.
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Ae⃗1 = 2e⃗1e⃗1

Ae⃗2

e⃗2

A

[
2
1

]
= 3

[
2
1

][
2
1

]

Figure 60 The map A stretches out the eigenvector
[
2
1

]
by a factor of 3 (the corresponding

eigenvalue).

In other words, Ax⃗ = λx⃗ for some scalar λ. If x⃗ 6= 0⃗, then we say x⃗ is a nontrivial
eigenvector and we call this λ an eigenvalue of A. ♢
Activity 5.3.6 Finding the eigenvalues λ that satisfy

Ax⃗ = λx⃗ = λ(Ix⃗) = (λI)x⃗

for some nontrivial eigenvector x⃗ is equivalent to finding nonzero solutions for the matrix
equation

(A− λI)x⃗ = 0⃗.

(a) If λ is an eigenvalue, and T is the transformation with standard matrix A− λI, which
of these must contain a non-zero vector?

A. The kernel of T
B. The image of T

C. The domain of T
D. The codomain of T

(b) Therefore, what can we conclude?

A. A is invertible
B. A is not invertible

C. A− λI is invertible
D. A− λI is not invertible

(c) And what else?

A. detA = 0

B. detA = 1

C. det(A− λI) = 0

D. det(A− λI) = 1

Fact 5.3.7 The eigenvalues λ for a matrix A are exactly the values that make A − λI
non-invertible.
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Thus the eigenvalues λ for a matrix A are the solutions to the equation

det(A− λI) = 0.

Definition 5.3.8 The expression det(A− λI) is called the characteristic polynomial of
A.

For example, when A =

[
1 2
5 4

]
, we have

A− λI =

[
1 2
5 4

]
−
[
λ 0
0 λ

]
=

[
1− λ 2
5 4− λ

]
.

Thus the characteristic polynomial of A is

det
[
1− λ 2
5 4− λ

]
= (1− λ)(4− λ)− (2)(5) = λ2 − 5λ− 6

and its eigenvalues are the solutions −1, 6 to λ2 − 5λ− 6 = 0. ♢

Activity 5.3.9 Let A =

[
5 2
−3 −2

]
.

(a) Compute det(A− λI) to determine the characteristic polynomial of A.

(b) Set this characteristic polynomial equal to zero and factor to determine the eigenvalues
of A.

Activity 5.3.10 Find all the eigenvalues for the matrix A =

[
3 −3
2 −4

]
.

Activity 5.3.11 Find all the eigenvalues for the matrix A =

[
1 −4
0 5

]
.

Activity 5.3.12 Find all the eigenvalues for the matrix A =

 3 −3 1
0 −4 2
0 0 7

.

5.3.3 Individual Practice
Activity 5.3.13 Let A ∈ Mn,n and λ ∈ R. The eigenvalues of A that correspond to λ are
the vectors that get stretched by a factor of λ. Consider the following special cases for which
we can make more geometric meaning.

(a) What are some other ways we can think of the eigenvalues corresponding to eigenvalue
λ = 0?

(b) What are some other ways we can think of the eigenvalues corresponding to eigenvalue
λ = 1?

(c) What are some other ways we can think of the eigenvalues corresponding to eigenvalue
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λ = −1?

(d) How might we interpret a matrix that has no (real) eigenvectors/values?

5.3.4 Videos

Standalone

Figure 61 Video: Finding eigenvalues

5.3.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/GT3/.

5.3.6 Mathematical Writing Explorations
Exploration 5.3.14 What are the maximum and minimum number of eigenvalues associated
with an n× n matrix? Write small examples to convince yourself you are correct, and then
prove this in generality.

5.3.7 Sample Problem and Solution
Sample problem Example B.1.24.

5.4 Eigenvectors and Eigenspaces (GT4)

Learning Outcomes
• Find a basis for the eigenspace of a 4× 4 matrix associated with a given eigenvalue.

https://tbil.org/video-GT3.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/GT3/
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5.4.1 Warm Up
Activity 5.4.1 Which of the following vectors is an eigenvector for A =

2 4 −1 −5
0 0 −3 −9
1 1 0 2
−2 −2 3 5

?

A.


−2
1
0
1



B.


−3
3
−2
1


5.4.2 Class Activities

Activity 5.4.2 It’s possible to show that −2 is an eigenvalue for

 −1 4 −2
2 −7 9
3 0 4

.

Compute the kernel of the transformation with standard matrix

A− (−2)I =

 ? 4 −2
2 ? 9
3 0 ?


to find all the eigenvectors x⃗ such that Ax⃗ = −2x⃗.
Definition 5.4.3 Since the kernel of a linear map is a subspace of Rn, and the kernel
obtained from A− λI contains all the eigenvectors associated with λ, we call this kernel the
eigenspace of A associated with λ. ♢

Activity 5.4.4 Find a basis for the eigenspace for the matrix

 0 0 3
1 0 −1
0 1 3

 associated with

the eigenvalue 3.

Activity 5.4.5 Find a basis for the eigenspace for the matrix


5 −2 0 4
6 −2 1 5
−2 1 2 −3
4 5 −3 6

 asso-

ciated with the eigenvalue 1.
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Activity 5.4.6 Find a basis for the eigenspace for the matrix


4 3 0 0
3 3 0 0
0 0 2 5
0 0 0 2

 associated

with the eigenvalue 2.

5.4.3 Individual Practice
Activity 5.4.7 Suppose that T : R2 → R2 is a linear transformation with standard matrix A.
Further, suppose that we know that u⃗ =

[
1
−1

]
and v⃗ =

[
2
−3

]
are eigenvectors corresponding

to eigenvalues 2 and −3 respectively.

(a) Express the vector w⃗ =

[
2
1

]
as a linear combination of u⃗, v⃗.

(b) Determine T (w⃗).

5.4.4 Videos

Standalone

Figure 62 Video: Finding eigenvectors

5.4.5 Exercises
Exercises available at https://tbil.org/linear-algebra/preview/exercises/#/bank/GT4/.

5.4.6 Mathematical Writing Explorations
Exploration 5.4.8 Given a matrix A, let {v⃗1, v⃗2, . . . , v⃗n} be the eigenvectors with associated
distinct eigenvalues {λ1, λ2, . . . , λn}. Prove the set of eigenvectors is linearly independent.

https://tbil.org/video-GT4.html
https://tbil.org/linear-algebra/preview/exercises/#/bank/GT4/
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5.4.7 Sample Problem and Solution
Sample problem Example B.1.25.



Appendix A

Applications

A.1 Civil Engineering: Trusses and Struts

A.1.1 Activities
Definition A.1.1 In engineering, a truss is a structure designed from several beams of
material called struts, assembled to behave as a single object.

Figure 63 A simple truss

166
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C

A

D

B

E

Figure 64 A simple truss
♢

Activity A.1.2 Consider the representation of a simple truss pictured below. All of the
seven struts are of equal length, affixed to two anchor points applying a normal force to
nodes C and E, and with a 10000N load applied to the node given by D.

C

A

D

B

E

Figure 65 A simple truss
Which of the following must hold for the truss to be stable?

1. All of the struts will experience compression.

2. All of the struts will experience tension.

3. Some of the struts will be compressed, but others will be tensioned.
Observation A.1.3 Since the forces must balance at each node for the truss to be stable,
some of the struts will be compressed, while others will be tensioned.
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C

A

D

B

E

Figure 66 Completed truss
By finding vector equations that must hold at each node, we may determine many of the

forces at play.
Remark A.1.4 For example, at the bottom left node there are 3 forces acting.

C

A

D

B

E

Figure 67 Truss with forces

Let F⃗CA be the force on C given by the compression/tension of the strut CA, let F⃗CD be
defined similarly, and let N⃗C be the normal force of the anchor point on C.

For the truss to be stable, we must have:

F⃗CA + F⃗CD + N⃗C = 0⃗

Activity A.1.5 Using the conventions of the previous remark, and where L⃗ represents the
load vector on node D, find four more vector equations that must be satisfied for each of the
other four nodes of the truss.
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C

A

D

B

E

Figure 68 A simple truss

A : ?

B : ?

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : ?

E : ?

Remark A.1.6 The five vector equations may be written as follows.

A : F⃗AC + F⃗AD + F⃗AB = 0⃗

B : F⃗BA + F⃗BD + F⃗BE = 0⃗

C : F⃗CA + F⃗CD + N⃗C = 0⃗

D : F⃗DC + F⃗DA + F⃗DB + F⃗DE + L⃗ = 0⃗

E : F⃗EB + F⃗ED + N⃗E = 0⃗

Observation A.1.7 Each vector has a vertical and horizontal component, so it may be
treated as a vector in R2. Note that F⃗CA must have the same magnitude (but opposite
direction) as F⃗AC .

F⃗CA = x

[
cos(60◦)
sin(60◦)

]
= x

[
1/2√
3/2

]
F⃗AC = x

[
cos(−120◦)
sin(−120◦)

]
= x

[
−1/2

−
√
3/2

]
Activity A.1.8 To write a linear system that models the truss under consideration with
constant load 10000 newtons, how many scalar variables will be required?

• 7: 5 from the nodes, 2 from the anchors

• 9: 7 from the struts, 2 from the anchors
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• 11: 7 from the struts, 4 from the anchors

• 12: 7 from the struts, 4 from the anchors, 1 from the load

• 13: 5 from the nodes, 7 from the struts, 1 from the load

C

A

D

B

E

Figure 69 A simple truss
Observation A.1.9 Since the angles for each strut are known, one variable may be used to
represent each.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 70 Variables for the truss
For example:

F⃗AB = −F⃗BA = x1

[
cos(0)
sin(0)

]
= x1

[
1
0

]
F⃗BE = −F⃗EB = x5

[
cos(−60◦)
sin(−60◦)

]
= x5

[
1/2

−
√
3/2

]
Observation A.1.10 Since the angle of the normal forces for each anchor point are unknown,
two variables may be used to represent each.
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C

A

D

B

E

Figure 71 Truss with normal forces

N⃗C =

[
y1
y2

]
N⃗D =

[
z1
z2

]
The load vector is constant.

L⃗ =

[
0

−10000

]
Remark A.1.11 Each of the five vector equations found previously represent two linear
equations: one for the horizontal component and one for the vertical.

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 72 Variables for the truss

C : F⃗CA + F⃗CD + N⃗C = 0⃗

⇔ x2

[
cos(60◦)
sin(60◦)

]
+ x6

[
cos(0◦)
sin(0◦)

]
+

[
y1
y2

]
=

[
0
0

]
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Using the approximation
√
3/2 ≈ 0.866, we have

⇔ x2

[
0.5
0.866

]
+ x6

[
1
0

]
+ y1

[
1
0

]
+ y2

[
0
1

]
=

[
0
0

]
Activity A.1.12 Expand the vector equation given below using sine and cosine of appro-
priate angles, then compute each component (approximating

√
3/2 ≈ 0.866).

C

A

D

B

E

x1

x2 x3 x4 x5

x6 x7

Figure 73 Variables for the truss

D : F⃗DA + F⃗DB + F⃗DC + F⃗DE = −L⃗

⇔ x3

[
cos( ? )
sin( ? )

]
+ x4

[
cos( ? )
sin( ? )

]
+ x6

[
cos( ? )
sin( ? )

]
+ x7

[
cos( ? )
sin( ? )

]
=

[
?
?

]
⇔ x3

[
?
?

]
+ x4

[
?
?

]
+ x6

[
?
?

]
+ x7

[
?
?

]
=

[
?
?

]
Observation A.1.13 The full augmented matrix given by the ten equations in this linear
system is given below, where the eleven columns correspond to x1, . . . , x7, y1, y2, z1, z2, and
the ten rows correspond to the horizontal and vertical components of the forces acting at
A, . . . , E.

1 −0.5 0.5 0 0 0 0 0 0 0 0 0
0 −0.866 −0.866 0 0 0 0 0 0 0 0 0
−1 0 0 −0.5 0.5 0 0 0 0 0 0 0
0 0 0 −0.866 −0.866 0 0 0 0 0 0 0
0 0.5 0 0 0 1 0 1 0 0 0 0
0 0.866 0 0 0 0 0 0 1 0 0 0
0 0 −0.5 0.5 0 −1 1 0 0 0 0 0
0 0 0.866 0.866 0 0 0 0 0 0 0 10000
0 0 0 0 −0.5 0 −1 0 0 1 0 0
0 0 0 0 0.866 0 0 0 0 0 1 0





APPENDIX A. APPLICATIONS 173

Observation A.1.14 This matrix row-reduces to the following.

∼



1 0 0 0 0 0 0 0 0 0 0 −5773.7
0 1 0 0 0 0 0 0 0 0 0 −5773.7
0 0 1 0 0 0 0 0 0 0 0 5773.7
0 0 0 1 0 0 0 0 0 0 0 5773.7
0 0 0 0 1 0 0 0 0 0 0 −5773.7
0 0 0 0 0 1 0 0 0 −1 0 2886.8
0 0 0 0 0 0 1 0 0 −1 0 2886.8
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 5000
0 0 0 0 0 0 0 0 0 0 1 5000


Observation A.1.15 Thus we know the truss must satisfy the following conditions.

x1 = x2 = x5 = −5882.4

x3 = x4 = 5882.4

x6 = x7 = 2886.8 + z1

y1 = −z1

y2 = z2 = 5000

In particular, the negative x1, x2, x5 represent tension (forces pointing into the nodes), and
the postive x3, x4 represent compression (forces pointing out of the nodes). The vertical
normal forces y2 + z2 counteract the 10000 load.

C

A

D

B

E

Figure 74 Completed truss
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A.2 Computer Science: PageRank

A.2.1 Activities
Activity A.2.1 The $978,000,000,000 Problem.

In the picture below, each circle represents a webpage, and each arrow represents a link
from one page to another.

1

2 3

4 5 6

7

Figure 75 A seven-webpage network
Based on how these pages link to each other, write a list of the 7 webpages in order from

most important to least important.
Observation A.2.2 The $978,000,000,000 Idea. Links are endorsements. That is:

1. A webpage is important if it is linked to (endorsed) by important pages.

2. A webpage distributes its importance equally among all the pages it links to (endorses).

Consider this small network with only three pages. Let x1, x2, x3 be the importance of
the three pages respectively.
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1

2 3
Figure 76 A three-webpage network

1. x1 splits its endorsement in half between x2 and x3

2. x2 sends all of its endorsement to x1

3. x3 sends all of its endorsement to x2.

This corresponds to the page rank system:

x2 =x1

1

2
x1 +x3 =x2

1

2
x1 =x3

□
Observation A.2.4
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1

2 3
Figure 77 A three-webpage network

x2 =x1

1

2
x1 +x3 =x2

1

2
x1 =x3

 0 1 0
1
2

0 1
1
2

0 0

 x1

x2

x3

 =

 x1

x2

x3



By writing this linear system in terms of matrix multiplication, we obtain the page rank

matrix A =

 0 1 0
1
2

0 1
1
2

0 0

 and page rank vector x⃗ =

 x1

x2

x3

.

Thus, computing the importance of pages on a network is equivalent to solving the matrix
equation Ax⃗ = 1x⃗.
Activity A.2.5 Thus, our $978,000,000,000 problem is what kind of problem? 0 1 0

1
2

0 1
2

1
2

0 0

 x1

x2

x3

 = 1

 x1

x2

x3


A. An antiderivative problem

B. A bijection problem
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C. A cofactoring problem

D. A determinant problem

E. An eigenvector problem
Activity A.2.6 Find a page rank vector x⃗ satisfying Ax⃗ = 1x⃗ for the following network’s
page rank matrix A.

That is, find the eigenspace associated with λ = 1 for the matrix A, and choose a vector
from that eigenspace.

1

2 3
Figure 78 A three-webpage network

A =

 0 1 0
1
2

0 1
1
2

0 0



Observation A.2.7 Row-reducing A − I =

 −1 1 0
1
2

−1 1
1
2

0 −1

 ∼

 1 0 −2
0 1 −2
0 0 0

 yields the

basic eigenvector

 2
2
1

.

Therefore, we may conclude that pages 1 and 2 are equally important, and both pages
are twice as important as page 3.
Activity A.2.8 Compute the 7× 7 page rank matrix for the following network.
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1

2 3

4 5 6

7

Figure 79 A seven-webpage network
For example, since website 1 distributes its endorsement equally between 2 and 4, the

first column is



0
1
2

0
1
2

0
0
0


.

Activity A.2.9 Find a page rank vector for the given page rank matrix.

A =



0 1
2

0 0 0 0 0
1
2

0 0 1 0 0 1
2

0 1
2

0 0 0 0 0
1
2

0 1
2

0 0 0 1
2

0 0 0 0 0 1
2

0
0 0 0 0 1

2
0 0

0 0 1
2

0 1
2

1
2

0



1

2 3

4 5 6

7

Figure 80 A seven-webpage network
Which webpage is most important?

Observation A.2.10 Since a page rank vector for the network is given by x⃗, it’s reasonable
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to consider page 2 as the most important page.

x⃗ =



2
4
2
2.5
0
0
1


Based upon this page rank vector, here is a complete ranking of all seven pages from

most important to least important:

2, 4, 1, 3, 7, 5, 6

1

2 3

4 5 6

7

Figure 81 A seven-webpage network
Activity A.2.11 Given the following diagram, use a page rank vector to rank the pages 1
through 7 in order from most important to least important.
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1 2 3 4

5 6 7

Figure 82 Another seven-webpage network

A.3 Geology: Phases and Components

A.3.1 Activities
Definition A.3.1 In geology, a phase is any physically separable material in the system,
such as various minerals or liquids.

A component is a chemical compound necessary to make up the phases; these are
usually oxides such as Calcium Oxide (CaO) or Silicon Dioxide (SiO2).

In a typical application, a geologist knows how to build each phase from the components,
and is interested in determining reactions among the different phases. ♢
Observation A.3.2 Consider the 3 components

c⃗1 = CaO c⃗2 = MgO and c⃗3 = SiO2

and the 5 phases:

p⃗1 = Ca3MgSi2O8 p⃗2 = CaMgSiO4 p⃗3 = CaSiO3

p⃗4 = CaMgSi2O6 p⃗5 = Ca2MgSi2O7

Geologists already know (or can easily deduce) that

p⃗1 = 3c⃗1 + c⃗2 + 2c⃗3 p⃗2 = c⃗1 + c⃗2 + c⃗3 p⃗3 = c⃗1 + 0c⃗2 + c⃗3

p⃗4 = c⃗1 + c⃗2 + 2c⃗3 p⃗5 = 2c⃗1 + c⃗2 + 2c⃗3

since, for example:
c⃗1 + c⃗3 = CaO + SiO2 = CaSiO3 = p⃗3

Activity A.3.3 To study this vector space, each of the three components c⃗1, c⃗2, c⃗3 may be
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considered as the three components of a Euclidean vector.

p⃗1 =

 3
1
2

 , p⃗2 =

 1
1
1

 , p⃗3 =

 1
0
1

 , p⃗4 =

 1
1
2

 , p⃗5 =

 2
1
2

 .

Determine if the set of phases is linearly dependent or linearly independent.
Activity A.3.4 Geologists are interested in knowing all the possible chemical reactions
among the 5 phases:

p⃗1 = Ca3MgSi2O8 =

 3
1
2

 p⃗2 = CaMgSiO4 =

 1
1
1

 p⃗3 = CaSiO3 =

 1
0
1



p⃗4 = CaMgSi2O6 =

 1
1
2

 p⃗5 = Ca2MgSi2O7 =

 2
1
2

 .

That is, they want to find numbers x1, x2, x3, x4, x5 such that

x1p⃗1 + x2p⃗2 + x3p⃗3 + x4p⃗4 + x5p⃗5 = 0.

(a) Set up a system of equations equivalent to this vector equation.

(b) Find a basis for its solution space.

(c) Interpret each basis vector as a vector equation and a chemical equation.

Activity A.3.5 We found two basis vectors


1
−2
−2
1
0

 and


0
−1
−1
0
1

, corresponding to the

vector and chemical equations

2p⃗2 + 2p⃗3 = p⃗1 + p⃗4 2CaMgSiO4 + 2CaSiO3 = Ca3MgSi2O8 + CaMgSi2O6

p⃗2 + p⃗3 = p⃗5 CaMgSiO4 + CaSiO3 = Ca2MgSi2O7

Combine the basis vectors to produce a chemical equation among the five phases that
does not involve p⃗2 = CaMgSiO4.
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Appendix

B.1 Sample Exercises with Solutions
Here we model one exercise and solution for each learning objective. Your solutions should
not look identical to those shown below, but these solutions can give you an idea of the level
of detail required for a complete solution.

Consider the vector equation

x1

 4
−3
3

+ x2

 4
−3
3

+ x3

 3
1
3

+ x4

 18
−7
15

 =

 −11
5
−9


(a) Write a corresponding system of equations.

Solution.
4x1 + 4 x2 + 3 x3 + 18 x4 = −11
−3x1 − 3x2 + x3 − 7x4 = 5
3x1 + 3 x2 + 3 x3 + 15 x4 = −9

(b) Write a corresponding augmented matrix.

Solution.  4 4 3 18 −11
−3 −3 1 −7 5
3 3 3 15 −9


□

(a) For each of the following matrices, explain why it is not in reduced row echelon form.

(i)

A =

 0 0 1 0 −2
1 5 0 −2 1
0 0 0 0 0
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Solution. A =

 0 0 1 0 −2

1 5 0 −2 1
0 0 0 0 0

 is not in reduced row echelon form

because the pivots are not descending to the right.
(ii)

B =

 1 −6 3 0 −1
0 0 0 7 14
0 0 0 0 0



Solution. B =

 1 −6 3 0 −1

0 0 0 7 14
0 0 0 0 0

 is not in reduced row echelon form

because a leading term has a value besides 1.
(iii)

C =

 1 7 −4 1 12
0 1 −1 0 2
0 0 0 0 0



Solution. C =

 1 7 −4 1 12

0 1 −1 0 2
0 0 0 0 0

 is not in reduced row echelon form

because there is a non-zero entry above or below a pivot.

(b) Show step by step why

RREF

 4 4 3 18 −11
−3 −3 1 −7 5
3 3 3 15 −9

 =

 1 1 0 3 −2
0 0 1 2 −1
0 0 0 0 0


Solution. 4 4 3 18 −11

−3 −3 1 −7 5
3 3 3 15 −9

 R1+R2→R1∼

 1 1 4 11 −6
−3 −3 1 −7 5
3 3 3 15 −9


R2+3R1→R2

R3−3R1→R3∼

 1 1 4 11 −6
0 0 13 26 −13
0 0 −9 −18 9


1
13

R2→R2

1
9
R3→R3∼

 1 1 4 11 −6

0 0 1 2 −1
0 0 −1 −2 1


R1−4R2→R1

R3+R1→R3∼

 1 1 0 3 −2

0 0 1 2 −1
0 0 0 0 0


□
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Consider each of the following systems of linear equations or vector equations.

(a)
x1 − x2 + x3 = 4

x2 − 2x3 = −1
x2 − 2x3 = −3

x1 + 2 x2 − 5x3 = 0

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.
Solution. The given linear system is represented by this augmented matrix,
which row reduces as follows:

1 −1 1 4
0 1 −2 −1
0 1 −2 −3
1 2 −5 0

 ∼


1 0 −1 0
0 1 −2 0
0 0 0 1
0 0 0 0


The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 − x3 = 0
x2 − 2x3 = 0

0 = 1
0 = 0

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
Solution. Because 0 = 1 is false, the solution set has no solutions. This means
the solution set is ∅.

(b)
−x1 + x2 + x3 = 2
−3x1 + x2 − 4x3 = −9
2x1 − x2 + 2 x3 = 5
−6x1 + 3 x2 − 4x3 = −9

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.
Solution. The given linear system is represented by this augmented matrix,
which row reduces as follows:

−1 1 1 2
−3 1 −4 −9
2 −1 2 5
−6 3 −4 −9

 ∼


1 0 0 −2
0 1 0 −3
0 0 1 3
0 0 0 0
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The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 = −2
x2 = −3

x3 = 3
0 = 0

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
Solution. Since each variable is equal to a fixed value, there exists only one

solution. The solution set is


 −2

−3
3

.

(c)
x1 + 4 x2 − 14x3 = 11
−x1 − 3x2 + 11 x3 = −8
−x1 − 3x2 + 11 x3 = −8

3x2 − 9x3 = 9

(i) Explain and demonstrate how to find a simpler linear system that has the same
solution set.
Solution. The given linear system is represented by this augmented matrix,
which row reduces as follows:

1 4 −14 11
−1 −3 11 −8
−1 −3 11 −8
0 3 −9 9

 ∼


1 0 −2 −1
0 1 −3 3
0 0 0 0
0 0 0 0


The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 − 2x3 = −1
x2 − 3x3 = 3

0 = 0
0 = 0

(ii) Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.
Solution. Since the simplified system obtained from the RREF calculation has
no contradictions, but has equations with multiple variables, the solution set has
infinitely-many solutions.

□
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Consider the following vector equation.

x1


1
0
1
1

+ x2


−2
0
−2
−2

+ x3


−5
1
−5
−2

+ x4


13
−2
13
7

+ x5


−14
3

−14
−5

 =


18
−3
18
9


(a) Explain how to find a simpler linear system that has the same solution set.

Solution. The given linear system is represented by this augmented matrix, which
row reduces as follows:

1 −2 −5 13 −14 18
0 0 1 −2 3 −3
1 −2 −5 13 −14 18
1 −2 −2 7 −5 9

 ∼


1 −2 0 3 1 3
0 0 1 −2 3 −3
0 0 0 0 0 0
0 0 0 0 0 0


The RREF matrix then yields the following simplified linear system with the same
solution set:

x1 − 2x2 + 3 x4 + x5 = 3
x3 − 2x4 + 3x5 = −3

0 = 0
0 = 0

(b) Explain how to describe this solution set using set notation.

Solution. We can assign free variables for each of the non-pivot columns: x2 = a,
x4 = b, and x5 = c:

x1 − 2 a + 3 b + c = 3
x3 − 2 b + 3 c = −3

Then we may solve for the bound variables x1 and x3:

x1 = 2a− 3b− c+ 3

x3 = 2b− 3c− 3

Therefore, the solution set is




2 a− 3 b− c+ 3

a
2 b− 3 c− 3

b
c


∣∣∣∣∣∣∣∣∣∣
a, b, c ∈ R

.

□

1. Write a statement involving the solutions of a vector equation that’s equivalent to each
claim below.
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•

 −13
3

−13

is a linear combination of the vectors 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

.

•

 −13
3

−15

is a linear combination of the vectors 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5

.

2. Use these statements to determine if each vector is or is not a linear combination. If
it is, give an example of such a linear combination.

Solution.

•

 −13
3

−13

is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5


exactly when the vector equation

x1

 1
0
1

+ x2

 2
0
2

+ x3

 3
0
3

+ x4

 −5
1
−5

 =

 −13
3

−13


has a solution. To solve this vector equation, we compute

RREF

 1 2 3 −5 −13
0 0 0 1 3
1 2 3 −5 −13

 =

 1 2 3 0 2
0 0 0 1 3
0 0 0 0 0

 .

We see that this vector equation has solution set




2− 2a− 3b
a
b
3


∣∣∣∣∣∣∣∣ a, b ∈ R

, so

 −13
3

−13

 is a linear combination; for example, 2

 1
0
1

+ 3

 −5
1
−5

 =

 −13
3

−13


•

 −13
3

−15

 is a linear combination of the vectors

 1
0
1

 ,

 2
0
2

 ,

 3
0
3

 , and

 −5
1
−5


exactly when the vector equation

x1

 1
0
1

+ x2

 2
0
2

+ x3

 3
0
3

+ x4

 −5
1
−5

 =

 −13
3

−15
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has a solution. To solve this vector equation, we compute

RREF

 1 2 3 −5 −13
0 0 0 1 3
1 2 3 −5 −15

 =

 1 2 3 0 0
0 0 0 1 0
0 0 0 0 1

 .

This vector equation has no solution, so

 −13
3

−15

 is not a linear combination.

□

1. Write a statement involving the solutions of a vector equation that’s equivalent to each
claim below.

• The set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 spans R4.

• The set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 does not span R4.

2. Explain how to determine which of these statements is true.

Solution. The set of vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 spans R4 exactly

when the vector equation

x1


1
−1
2
0

+ x2


3
−2
3
3

+ x3


10
−7
11
9

+ x4


−6
3
−3
−9

 = v⃗

has a solution for all v⃗ ∈ R4. If there is some vector v⃗ ∈ R4 for which this vector equation
has no solution, then the set does not span R4. To answer this, we compute

RREF


1 3 10 −6
−1 −2 −7 3
2 3 11 −3
0 3 9 −9

 =


1 0 1 3
0 1 3 −3
0 0 0 0
0 0 0 0

 .

We see that for some v⃗ ∈ R4, this vector equation will not have a solution, so the set of

vectors




1
−1
2
0

 ,


3
−2
3
3

 ,


10
−7
11
9

 ,


−6
3
−3
−9


 does not span R4. □
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Consider the following two sets of Euclidean vectors.

W =




x
y
z
w


∣∣∣∣∣∣∣∣x+ y = 3z + 2w

 U =




x
y
z
w


∣∣∣∣∣∣∣∣x+ y = 3z + w2


Explain why one of these sets is a subspace of R3, and why the other is not.

Solution. To show that W is a subspace, first note that it is nonempty as


0
0
0
0

 ∈ W ,

since 0 + 0 = 3(0) + 3(0). Then let v⃗ =


x1

y1
z1
w1

 ∈ W and w⃗ =


x2

y2
z2
w2

 ∈ W , so we know

that x1 + y1 = 3z1 + 2w1 and x2 + y2 = 3z2 + 2w2.
Consider 

x1

y1
z1
w1

+


x2

y2
z2
w2

 =


x1 + x2

y1 + y2
z1 + z2
w1 + w2

 .

To see if v⃗+ w⃗ ∈ W , we need to check if (x1 + x2) + (y1 + y2) = 3(z1 + z2) + 2(w1 +w2). We
compute

(x1 + x2) + (y1 + y2) = (x1 + y1) + (x2 + y2) by regrouping
= (3z1 + 2w1) + (3z2 + 2w2) since
= 3(z1 + z2) + 2(w1 + w2) by regrouping.

Thus v⃗ + w⃗ ∈ W , so W is closed under vector addition.
Now consider

cv⃗ =


cx1

cy1
cz1
cw1

 .

Similarly, to check that cv⃗ ∈ W , we need to check if cx1 + cy1 = 3(cz1) + 2(cw1), so we
compute

cx1 + cy1 = c(x1 + y1) by factoring
= c(3z1 + 2w1) since
= 3(cz1) + 2(cw1) by regrouping

and we see that cv⃗ ∈ W , so W is closed under scalar multiplication. Therefore W is a
subspace of R3.

Now, to show U is not a subspace, we will show that it is not closed under vector addition.
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• (Solution Method 1) Now let v⃗ =


x1

y1
z1
w1

 ∈ U and w⃗ =


x2

y2
z2
w2

 ∈ U , so we know that

x1 + y1 = 3z1 + w2
1 and x2 + y2 = 3z2 + w2

2.
Consider

v⃗ + w⃗ =


x1

y1
z1
w1

+


x2

y2
z2
w2

 =


x1 + x2

y1 + y2
z1 + z2
w1 + w2

 .

To see if v⃗+ w⃗ ∈ U , we need to check if (x1 + x2) + (y1 + y2) = 3(z1 + z2) + (w1 +w2)
2.

We compute

(x1 + x2) + (y1 + y2) = (x1 + y1) + (x2 + y2) by regrouping
= (3z1 + w2

1) + (3z2 + w2
2) since

= 3(z1 + z2) + (w2
1 + w2

2) by regrouping

and thus v⃗ + w⃗ ∈ U \textbf{only when} w2
1 + w2

2 = (w1 + w2)
2. Since this is not true

in general, U is not closed under vector addition, and thus cannot be a subspace.

• (Solution Method 2) Note that the vector v⃗ =


0
1
0
1

 belongs to U since 0+1 = 3(0)+12.

However, the vector 2v⃗ =


0
2
0
2

 does not belong to U since 0+2 6= 3(0)+22. Therefore

U is not closed under scalar multiplication, and thus is not a subspace.

□

1. Write a statement involving the solutions of a vector equation that’s equivalent to each
claim below.

• The set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly independent.

• The set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly dependent.

2. Explain how to determine which of these statements is true.
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Solution. The set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly independent exactly

when the vector equation

x1


1
3
4
−4

+ x2


−1
−3
−4
4

+ x3


0
1
3
−3

 =


0
0
0
0


has no non-trivial (i.e. nonzero) solutions. The set is linearly dependent when there exists a
nontrivial (i.e. nonzero) solution. We compute

RREF


1 −1 0
3 −3 1
4 −4 3
−4 4 −3

 =


1 −1 0
0 0 1
0 0 0
0 0 0

 .

Thus, this vector equation has a solution set


 a

a
0

 ∣∣∣∣∣∣ a ∈ R

. Since there are nontriv-

ial solutions, we conclude that the set of vectors




1
3
4
−4

 ,


−1
−3
−4
4

 ,


0
1
3
−3


 is linearly

dependent. □

1. Write a statement involving spanning and independence properties that’s equivalent
to each claim below.

• The set of vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is a basis of R4.

• The set of vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is not a basis of R4.

2. Explain how to determine which of these statements is true.

Solution. The set of vectors




1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is a basis of R4
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exactly when it is linearly independent and the set spans R4. If it is either linearly dependent,
or the set does not span R4, then the set is not a basis.

To answer this, we compute

RREF


1 0 3 −2
3 1 11 −7
4 3 18 −11
−4 −3 −18 11

 =


1 0 3 −2
0 1 2 −1
0 0 0 0
0 0 0 0

 .

We see that this set of vectors is linearly dependent, so therefore the set of vectors


1
3
4
−4

 ,


0
1
3
−3

 ,


3
11
18
−18

 ,


−2
−7
−11
11


 is not a basis. □

Consider the subspace

W = span




1
−3
−1
2

 ,


1
0
1
−2

 ,


3
−6
−1
2

 ,


1
6
1
−1

 ,


2
3
0
1


 .

1. Explain how to find a basis of W .

2. Explain how to find the dimension of W .

Solution.

1. Observe that

RREF


1 1 3 1 2
−3 0 −6 6 3
−1 1 −1 1 0
2 −2 2 −1 1

 =


1 0 2 0 1
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0


If we remove the vectors yielding non-pivot columns, the resulting set will span the
same vectors while being linearly independent. Therefore


1
−3
−1
2

 ,


1
0
1
−2

 ,


1
6
1
−1




is a basis of W .

2. Since this (and thus every other) basis has three vectors in it, the dimension of W is
3.

□
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Consider the homogeneous system of equations
x1+ x2+3x3+ x4+2x5 =0

−3x1 − 6x3+6x4+3x5 =0

−x1+ x2− x3+ x4 =0

2x1− 2x2+2x3− x4+ x5 =0

1. Find the solution space of the system.

2. Find a basis of the solution space.
Solution.

1. Observe that

RREF


1 1 3 1 2 0
−3 0 −6 6 3 0
−1 1 −1 1 0 0
2 −2 2 −1 1 0

 =


1 0 2 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0


Letting x3 = a and x5 = b (since those correspond to the non-pivot columns), this is
equivalent to the system

x1 +2x3 +x5 =0

x2+ x3 =0

x3 =a

x4+x5 =0

x5 =b

Thus, the solution set is 


−2a− b

−a
a
−b
b


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R

 .

2. Since we can write 
−2a− b

−a
a
−b
b

 = a


−2
−1
1
0
0

+ b


−1
0
0
−1
1

 ,

a basis for the solution space is


−2
−1
1
0
0

 ,


−1
0
0
−1
1


 .

□
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Answer the following questions about transformations.

1. Consider the following maps of Euclidean vectors P : R3 → R3 and Q : R3 → R3

defined by

P

 x
y
z

 =

 3x− y + z
2x− 2 y + 4 z
−2x− 2 y − 3 z

 and Q

 x
y
z

 =

 y − 2 z
−3x− 4 y + 12 z

5xy + 3 z

 .

Without writing a proof, explain why only one of these maps is likely to be a linear
transformation.

2. Consider the following map of Euclidean vectors S : R2 → R2

S

([
x
y

])
=

[
x+ 2 y
−3xy

]
.

Prove that S is not a linear transformation.

3. Consider the following map of Euclidean vectors T : R2 → R2

T

([
x
y

])
=

[
−4x− 5 y
2x− 4 y

]
.

Prove that T is a linear transformation.

Solution.

1. A linear map between Euclidean spaces must consist of linear polynomials in each
component. All three components of P are linear so P is likely to be linear; however,
the third component of Q contains the nonlinear term xy, so Q is unlikely to be linear.

2. We need to show either that S fails to preserve either vector addition or that S fails
to preserve scalar multiplication.

For example, for a scalar c ∈ R and a vector
[
x
y

]
∈ R2, we can compute

S

(
c

[
x
y

])
= S

([
cx
cy

])
=

[
cx+ 2cy
−3c2xy

]
whereas

cS

([
x
y

])
= c

[
x+ 2y
−3xy

]
=

[
cx+ 2cy
−3cxy

]
.

Since −3c2xy 6= −3cxy, we see that S
(
c

[
x
y

])
6= cS

([
x
y

])
, so S fails to preserve

scalar multiplication and cannot be a linear transformation.
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Alternatively, we could instead take two vectors
[
x1

y1

]
,

[
x2

y2

]
∈ R2 and compute

S

([
x1

y1

]
+

[
x2

y2

])
= S

([
x1 + x2

y1 + y2

])
=

[
(x1 + x2) + 2(y1 + y2)
−3(x1 + x2)(y1 + y2)

]
whereas

S

([
x1

y1

])
+ S

([
x2

y2

])
=

[
x1 + 2y1
−3x1y1

]
+

[
x2 + 2y2
−3x2y2

]
=

[
x1 + 2y1 + x2 + 2y2
−3x1y1 − 3x2y2

]

Since −3(x1 + x2)(y1 + y2) 6= −3x1y1 − 3x2y2, we see that S

([
x1

y1

]
+

[
x2

y2

])
6=

S

([
x1

y1

])
+ S

([
x2

y2

])
, so S fails to preserve addition and cannot be a linear

transformation.

3. We need to show that T preserves both vector addition and that T preserves scalar
multiplication.

First, let us take two vectors
[
x1

y1

]
,

[
x2

y2

]
∈ R2 and compute

T

([
x1

y1

]
+

[
x2

y2

])
= T

([
x1 + x2

y1 + y2

])
=

[
−4(x1 + x2)− 5(y1 + y2)
2(x1 + x2)− 4(y1 + y2)

]
and

T

([
x1

y1

])
+T

([
x2

y2

])
=

[
−4x1 − 5y1
2x1 − 4y1

]
+

[
−4x2 − 5y2
2x2 − 4y2

]
=

[
−4x1 − 5y1 − 4x2 − 5y2
2x1 − 4y1 + 2x2 − 4y2

]

So we see that T

([
x1

y1

]
+

[
x2

y2

])
= T

([
x1

y1

])
+ T

([
x2

y2

])
, so T preserves

addition.

Now, take a scalar c ∈ R and a vector
[
x
y

]
∈ R2, and compute

T

(
c

[
x
y

])
= T

([
cx
cy

])
=

[
−4cx− 5cy
2cx− 4cy

]
and

cT

([
x
y

])
= c

[
−4x− 5y
2x− 4y

]
=

[
−4cx− 5cy
2cx− 4cy

]
.

We see that T

(
c

[
x
y

])
= cT

([
x
y

])
, so T preserves scalar multiplication.

Since T preserves both addition and scalar multiplication, we have proven that T is a
linear transformation.

□
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1. Find the standard matrix for the linear transformation T : R3 → R4 given by

T

 x
y
z

 =


−x+ y

−x+ 3y − z
7x+ y + 3z

0

 .

2. Let S : R4 → R3 be the linear transformation given by the standard matrix 2 3 4 1
0 1 −1 −1
3 −2 −2 4

 .

Compute S




−2
1
3
2


.

Solution.
1. Since

T

 1
0
0

 =


−1
−1
7
0



T

 0
1
0

 =


1
3
1
0



T

 0
0
1

 =


0
−1
3
0

 ,

the standard matrix for T is


−1 1 0
−1 3 −1
7 1 3
0 0 0

.

2.

S




−2
1
3
2


 = −2S(e⃗1) + S(e⃗2) + 3S(e⃗3) + 2S(e⃗4)

= −2

 2
0
3

+

 3
1
−2

+ 3

 4
−1
−2

+ 2

 1
−1
4

 =

 13
−4
−6

 .

□
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Let T : R4 → R3 be the linear transformation given by

T




x
y
z
w


 =

 x+ 3y + 2z − 3w
2x+ 4y + 6z − 10w
x+ 6y − z + 3w


1. Explain how to find the image of T and the kernel of T .

2. Explain how to find a basis of the image of T and a basis of the kernel of T .

3. Explain how to find the rank and nullity of T, and why the rank-nullity theorem holds
for T.

Solution.

1. To find the image we compute

Im(T ) = T (span {e⃗1, e⃗2, e⃗3, e⃗4})

= span {T (e⃗1), T (e⃗2), T (e⃗3), T (e⃗4)}

= span


 1

2
1

 ,

 3
4
6

 ,

 2
6
−1

 ,

 −3
−10
3

 .

2. The kernel is the solution set of the corresponding homogeneous system of equations,
i.e.

x+3y+2z− 3w = 0

2x+4y+6z−10w = 0

x+6y− z+ 3w =0.

So we compute

RREF

 1 3 2 −3 0
2 4 6 −10 0
1 6 −1 3 0

 =

 1 0 5 −9 0
0 1 −1 2 0
0 0 0 0 0

 .

Then, letting z = a and w = b we have

kerT =




−5a+ 9b
a− 2b

a
b


∣∣∣∣∣∣∣∣ a, b ∈ R

 .
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3. Since Im(T ) = span


 1

2
1

 ,

 3
4
6

 ,

 2
6
−1

 ,

 −3
−10
3

, we simply need to find a

linearly independent subset of these four spanning vectors. So we compute

RREF

 1 3 2 −3
2 4 6 −10
1 6 −1 3

 =

 1 0 5 −9
0 1 −1 2
0 0 0 0

 .

Since the first two columns are pivot columns, they form a linearly independent span-

ning set, so a basis for ImT is


 1

2
1

 ,

 3
4
6

 .

To find a basis for the kernel, note that

kerT =




−5a+ 9b
a− 2b

a
b


∣∣∣∣∣∣∣∣ a, b ∈ R



=

a


−5
1
1
0

+ b


9
−2
0
1


∣∣∣∣∣∣∣∣ a, b ∈ R


= span




−5
1
1
0

 ,


9
−2
0
1


 .

so a basis for the kernel is 


−5
1
1
0

 ,


9
−2
0
1


 .

4. The dimension of the image (the rank) is 2, the dimension of the kernel (the nullity) is
2, and the dimension of the domain of T is 4, so we see 2 + 2 = 4, which verifies that
the sum of the rank and nullity of T is the dimension of the domain of T .

□
Let T : R4 → R3 be the linear transformation given by the standard matrix 1 3 2 −3
2 4 6 −10
1 6 −1 3

.

1. Explain why T is or is not injective.
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2. Explain why T is or is not surjective.

Solution. Compute

RREF

 1 3 2 −3
2 4 6 −10
1 6 −1 3

 =

 1 0 5 −9
0 1 −1 2
0 0 0 0

 .

1. Note that the third and fourth columns are non-pivot columns, which means kerT
contains infinitely many vectors, so T is not injective.

2. Since there are only two pivots, the image (i.e. the span of the columns) is a 2-
dimensional subspace (and thus does not equal R3), so T is not surjective.

□
Let V be the set of all pairs of numbers (x, y) of real numbers together with the following

operations:

(x1, y1)⊕ (x2, y2) = (2x1 + 2x2, 2y1 + 2y2)

c� (x, y) = (cx, c2y)

1. Show that scalar multiplication distributes over vector addition:

c� ((x1, y1)⊕ (x2, y2)) = c� (x1, y1)⊕ c� (x2, y2)

2. Explain why V nonetheless is not a vector space.

Solution.

1. We compute both sides:

c� ((x1, y1)⊕ (x2, y2)) = c� (2x1 + 2x2, 2y1 + 2y2)

= (c(2x1 + 2x2), c
2(2y1 + 2y2))

= (2cx1 + 2cx2, 2c
2y1 + 2c2y2)

and

c� (x1, y1)⊕ c� (x2, y2) = (cx1, c
2y1)⊕ (cx2, c

2y2)

= (2cx1 + 2cx2, 2c
2y1 + 2c2y2)

Since these are the same, we have shown that the property holds.

2. To show V is not a vector space, we must show that it fails one of the 8 defining
properties of vector spaces. We will show that scalar multiplication does not distribute
over scalar addition, i.e., there are values such that

(c+ d)� (x, y) 6= c� (x, y)⊕ d� (x, y)
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• (Solution method 1) First, we compute

(c+ d)� (x, y) = ((c+ d)x, (c+ d)2y)

= ((c+ d)x, (c2 + 2cd+ d2)y).

Then we compute

c� (x, y)⊕ d� (x, y) = (cx, c2y)⊕ (dx, d2y)

= (2cx+ 2dx, 2c2y + 2d2y).

Since (c+ d)x 6= 2cx+ 2dy when c, d, x, y = 1, the property fails to hold.
• (Solution method 2) When we let c, d, x, y = 1, we may simplify both sides as

follows.

(c+ d)� (x, y) = 2� (1, 1)

= (2 · 1, 22 · 1)
= (2, 4)

c� (x, y)⊕ d� (x, y) = 1� (1, 1)⊕ 1� (1, 1)

= (1 · 1, 12 · 1)⊕ (1 · 1, 12 · 1)
= (1, 1)⊕ (1, 1)

= (2 · 1 + 2 · 1, 2 · 1 + 2 · 1)
= (4, 4)

Since these ordered pairs are different, the property fails to hold.

□

1. Given the set{
x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5

}
write a statement involving the solutions to a polynomial equation that’s equivalent to
each claim below.

• The set of polynomials is linearly independent.
• The set of polynomials is linearly dependent.

2. Explain how to determine which of these statements is true.

Solution. The set of polynomials{
x3 − 2x2 + x+ 2, 2x2 − 1,−x3 + 3x2 + 3x− 2, x3 − 6x2 + 9x+ 5

}
is linearly independent exactly when the polynomial equation

y1
(
x3 − 2x2 + x+ 2

)
+y2

(
2x2 − 1

)
+y3

(
−x3 + 3x2 + 3x− 2

)
+y4

(
x3 − 6x2 + 9x+ 5

)
= 0
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has no nontrivial (i.e. nonzero) solutions. The set is linearly dependent when this equation
has a nontrivial (i.e. nonzero) solution.

To solve this equation, we distribute and then collect coefficients to obtain

(y1 − y3 + y4)x
3+(−2y1 + 2y2 + 3y3 − 6y4)x

2+(y1 + 3y3 + 9y4)x+(2y1 − y2 − 2y3 + 5y4) = 0.

These polynomials are equal precisely when their coefficients are equal, leading to the system

y1 − y3 + y4 = 0
−2y1 + 2y2 + 3y3 − 6y4 = 0
y1 + + 3y3 + 9y4 = 0
2y1 − y2 − 2y3 + 5y4 = 0

.

To solve this, we compute

RREF


1 0 −1 1 0
−2 2 3 −6 0
1 0 3 9 0
2 −1 −2 5 0

 =


1 0 0 3 0
0 1 0 −3 0
0 0 1 2 0
0 0 0 0 0


The system has (infintely many) nontrivial solutions, so we that the set of polynomials

is linearly dependent. □
Of the following three matrices, only two may be multiplied.

A =

[
1 −3
0 1

]
B =

[
4 1 2

]
C =

[
0 1 3
1 −2 5

]
Explain which two may be multiplied and why. Then show how to find their product.
Solution. AC is the only one that can be computed, since C corresponds to a linear
transformation R3 → R2 and A corresponds to a linear transfromation R2 → R2. Thus the
composition AC corresponds to a linear transformation R3 → R2 with a 2 × 3 standard
matrix. We compute

AC (e⃗1) = A

([
0
1

])
= 0

[
1
0

]
+ 1

[
−3
1

]
=

[
−3
1

]

AC (e⃗2) = A

([
1
−2

])
= 1

[
1
0

]
− 2

[
−3
1

]
=

[
7
−2

]

AC (e⃗3) = A

([
3
5

])
= 3

[
1
0

]
+ 5

[
−3
1

]
=

[
−12
5

]
.

Thus
AC =

[
−3 7 −12
1 −2 5

]
.

□
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Explain why each of the following matrices is or is not invertible by disussing its corre-
sponding linear transformation. If the matrix is invertible, explain how to find its inverse.

D =


−1 1 0 2
−2 5 5 −4
2 −3 −2 0
4 −4 −3 5

 N =


−3 9 1 −11
3 −9 −2 13
3 −9 −3 15
−4 12 2 −16


Solution. We compute

RREF (D) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We see D is bijective, and therefore invertible. To compute the inverse, we solve Dx⃗ = e⃗1 by
computing

RREF


−1 1 0 2 1
−2 5 5 −4 0
2 −3 −2 0 0
4 −4 −3 5 0

 =


1 0 0 0 21
0 1 0 0 38
0 0 1 0 −36
0 0 0 1 −8

 .

Similarly, we solve Dx⃗ = e⃗2 by computing

RREF


−1 1 0 2 0
−2 5 5 −4 1
2 −3 −2 0 0
4 −4 −3 5 0

 =


1 0 0 0 8
0 1 0 0 14
0 0 1 0 −13
0 0 0 1 −3

 .

Similarly, we solve Dx⃗ = e⃗3 by computing

RREF


−1 1 0 2 0
−2 5 5 −4 0
2 −3 −2 0 1
4 −4 −3 5 0

 =


1 0 0 0 23
0 1 0 0 41
0 0 1 0 −39
0 0 0 1 −9

 .

Similarly, we solve Dx⃗ = e⃗4 by computing

RREF


−1 1 0 2 0
−2 5 5 −4 0
2 −3 −2 0 0
4 −4 −3 5 1

 =


1 0 0 0 −2
0 1 0 0 −4
0 0 1 0 4
0 0 0 1 1

 .

Combining these, we obtain

D−1 =


21 8 23 −2
38 14 41 −4
−36 −13 −39 4
−8 −3 −9 1

 .
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We compute

RREF (N) =


1 −3 0 3
0 0 1 −2
0 0 0 0
0 0 0 0

 .

We see N is not bijective and thus is not invertible. □
Use a matrix inverse to solve the following matrix-vector equation. 1 2 1

0 0 2
1 1 1

 v⃗ =

 4
−2
2



Solution. Using the techniques from section Section 4.3, and letting M =

 1 2 1
0 0 2
1 1 1

,

we find M−1 =

 −1 −1/2 2
1 0 −1
0 1/2 0

. Our equation can be written as Mv⃗ =

 4
−2
2

, and

may therefore be solved via

v⃗ = Iv⃗ = M−1Mv⃗ = M−1

 4
−2
2

 =

 1
2
−1


□

Let A be a 4× 4 matrix.
1. Give a 4× 4 matrix P that may be used to perform the row operation R3 → R3+4R1.

2. Give a 4× 4 matrix Q that may be used to perform the row operation R1 → −4R1.

3. Use matrix multiplication to describe the matrix obtained by applying R3 → 4R1+R3

and then R1 → −4R1 to A (note the order).

Solution.

1. P =


1 0 0 0
0 1 0 0
4 0 1 0
0 0 0 1



2. Q =


−4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


3. QPA

□



APPENDIX B. APPENDIX 204

Let A be a 4× 4 matrix with determinant −7.

1. Let B be the matrix obtained from A by applying the row operation R3 + 3R4 → R3.
What is det(B)?

2. Let C be the matrix obtained from A by applying the row operation −3R2 → R2.
What is det(C)?

3. Let D be the matrix obtained from A by applying the row operation R3 ↔ R4. What
is det(D)?

Solution.

1. Adding a multiple of one row to another row does not change the determinant, so
det(B) = det(A) = −7.

2. Scaling a row scales the determinant by the same factor, so so det(B) = −3 det(A) =
−3(−7) = 21.

3. Swaping rows changes the sign of the determinant, so det(B) = − det(A) = 7.

□
Show how to compute the determinant of the matrix

A =


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5


Solution. Here is one possible solution, first applying a single row operation, and then
performing Laplace/cofactor expansions to reduce the determinant to a linear combination
of 2× 2 determinants:

det


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 1
1 1 1 3
−3 1 2 −5

 = (−1) det

 1 3 −1
1 1 3
−3 1 −5

+ (1) det

 1 3 0
1 1 1
−3 1 2


= (−1)

(
(1) det

[
1 3
1 −5

]
− (1) det

[
3 −1
1 −5

]
+ (−3) det

[
3 −1
1 3

])
+

(1)

(
(1) det

[
1 1
1 2

]
− (3) det

[
1 1
−3 2

])
= (−1) (−8 + 14− 30) + (1) (1− 15)

= 10
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Here is another possible solution, using row and column operations to first reduce the deter-
minant to a 3× 3 matrix and then applying a formula:

det


1 3 0 −1
1 1 2 4
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 1
1 1 1 3
−3 1 2 −5

 = det


1 3 0 −1
0 0 1 0
1 1 1 2
−3 1 2 −7



= − det


1 3 0 −1
1 1 1 2
0 0 1 0
−3 1 2 −7

 = − det

 1 3 −1
1 1 2
−3 1 −7


= −((−7− 18− 1)− (3 + 2− 21))

= 10

□

Explain how to find the eigenvalues of the matrix
[
−2 −2
10 7

]
.

Solution. Compute the characteristic polynomial:

det(A− λI) = det
[
−2− λ −2

10 7− λ

]
= (−2− λ)(7− λ) + 20 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3)

The eigenvalues are the roots of the characteristic polynomial, namely 2 and 3. □
Explain how to find a basis for the eigenspace associated to the eigenvalue 3 in the matrix −7 −8 2

8 9 −1
13
2

5 2

 .

Solution. The eigenspace associated to 3 is the kernel of A− 3I, so we compute

RREF(A− 3I) = RREF

 −7− 3 −8 2
8 9− 3 −1
13
2

5 2− 3

 =

RREF

 −10 −8 2
8 6 −1
13
2

5 −1

 =

 1 0 1
0 1 −3

2

0 0 0

 .

Thus we see the kernel is 
 −a

3
2
a
a

 ∣∣∣∣∣∣ a ∈ R
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which has a basis of


 −1

3
2

1

. □

B.2 Definitions

Section 1.1 Linear Systems, Vector Equations, and Augmented Matrices (LE1)
Definition 1.1.2
Definition 1.1.3
Definition 1.1.5
Definition 1.1.7
Definition 1.1.10
Definition 1.1.17

Section 1.2 Row Reduction of Matrices (LE2)
Definition 1.2.2
Definition 1.2.5
Definition 1.2.8

Section 1.4 Linear Systems with Infinitely-Many Solutions (LE4)
Definition 1.4.3

Section 2.1 Linear Combinations (EV1)
Definition 2.1.3
Definition 2.1.4

Section 2.3 Subspaces (EV3)
Definition 2.3.4
Definition 2.3.7

Section 2.4 Linear Independence (EV4)
Definition 2.4.3

Section 2.5 Identifying a Basis (EV5)
Definition 2.5.5

(Continued on next page)



APPENDIX B. APPENDIX 207

Definition 2.5.9

Section 2.6 Subspace Basis and Dimension (EV6)
Definition 2.6.4
Definition 2.6.9

Section 3.1 Linear Transformations (AT1)
Definition 3.1.3
Definition 3.1.4

Section 3.2 Standard Matrices (AT2)
Definition 3.2.8

Section 3.3 Image and Kernel (AT3)
Definition 3.3.3
Definition 3.3.8

Section 3.4 Injective and Surjective Linear Maps (AT4)
Definition 3.4.2
Definition 3.4.5
Definition 3.4.12

Section 3.5 Vector Spaces (AT5)
Definition 3.5.7

Section 4.1 Matrices and Multiplication (MX1)
Definition 4.1.4

Section 4.2 The Inverse of a Matrix (MX2)
Definition 4.2.3
Definition 4.2.6

Section 5.1 Row Operations and Determinants (GT1)
Definition 5.1.11

Section 5.3 Eigenvalues and Characteristic Polynomials (GT3)
(Continued on next page)
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Definition 5.3.5
Definition 5.3.8

Section 5.4 Eigenvectors and Eigenspaces (GT4)
Definition 5.4.3

Section A.1 Civil Engineering: Trusses and Struts
Definition A.1.1

Section A.3 Geology: Phases and Components
Definition A.3.1
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isomorphism, 113

kernel, 87
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linear equation, 3

solution, 4
linear system, 4

consistent, 5
inconsistent, 5

linear transformation, 74
linearly dependent, 52
linearly independent, 52

matrix, 2

non-singular, 71
nontrivial, 160

pivot, 13

rank, 115
Reduced row echelon form, 13
row operations, 12
row space, 115

scalar, 106
solution set, 4
span, 31
standard, 59
standard matrix, 82
subspace, 44
symmetric matrix, 50
system of linear equations, 4

vector, 106
Euclidean, 3

vector equation, 4
vector space, 44, 106

209


	For Instructors
	Video Resources
	Systems of Linear Equations (LE)
	Linear Systems, Vector Equations, and Augmented Matrices (LE1)
	Row Reduction of Matrices (LE2)
	Counting Solutions for Linear Systems (LE3)
	Linear Systems with Infinitely-Many Solutions (LE4)

	Euclidean Vectors (EV)
	Linear Combinations (EV1)
	Spanning Sets (EV2)
	Subspaces (EV3)
	Linear Independence (EV4)
	Identifying a Basis (EV5)
	Subspace Basis and Dimension (EV6)
	Homogeneous Linear Systems (EV7)

	Algebraic Properties of Linear Maps (AT)
	Linear Transformations (AT1)
	Standard Matrices (AT2)
	Image and Kernel (AT3)
	Injective and Surjective Linear Maps (AT4)
	Vector Spaces (AT5)
	Polynomial and Matrix Spaces (AT6)

	Matrices (MX)
	Matrices and Multiplication (MX1)
	The Inverse of a Matrix (MX2)
	Solving Systems with Matrix Inverses (MX3)
	Row Operations as Matrix Multiplication (MX4)

	Geometric Properties of Linear Maps (GT)
	Row Operations and Determinants (GT1)
	Computing Determinants (GT2)
	Eigenvalues and Characteristic Polynomials (GT3)
	Eigenvectors and Eigenspaces (GT4)

	Appendices
	Applications
	Civil Engineering: Trusses and Struts
	Computer Science: PageRank
	Geology: Phases and Components

	Appendix
	Sample Exercises with Solutions
	Definitions


	Back Matter
	Index


