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Chapter 1

Systems of Linear Equations (LE)

Learning Outcomes

How can we solve systems of linear equations?
By the end of this chapter, you should be able to...

1.

Translate back and forth between a system of linear equations, a vector equation, and
the corresponding augmented matrix.

. Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced

row echelon form.
Determine the number of solutions for a system of linear equations or a vector equation.

Compute the solution set for a system of linear equations or a vector equation with
infinitely many solutions.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

1.1 Linear Systems, Vector Equations, and Augmented
Matrices (LE1)

Learning Outcomes

o Translate back and forth between a system of linear equations, a vector equation, and
the corresponding augmented matrix.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.1 Consider the pairs of lines described by the equations below. Decide which
of these are parallel, identical, or transverse (i.e., intersect in a single point).

()

-1 + 3[)32 =1
2512'1 — 5.1'2 =2
(b)
-1 + 3.%’2 =1
2[E1 — 6£L‘2 = -2
(c)
-1 + 3I2 =1

21’1 —6332 =3



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.2 A matrix is an m x n array of real numbers with m rows and n columns:

aip; a2 Q1n
Q21  A22 Q2n, o .

. = [t U |
Am1 Am2 - Qmp

Frequently we will use matrices to describe an ordered list of its column vectors:

a1 Q12 Q1n
Q21 Q22 Q2n . -
y s T = UV1,V2, " ,Up.
am1 Am2 Amn
When order is irrelevant, we will use set notation:
ai 12 A1n
21 Q22 Q2n . _.
) y T :{Ulav27"'7vn}-

am1 Am2 Amn



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.3 A Euclidean vector is an ordered list of real numbers

ai
ag

Qn

We will find it useful to almost always typeset Euclidean vectors vertically, but the notation
[ a; Qg - Gy }T is also valid when vertical typesetting is inconvenient. The set of all
Euclidean vectors with n components is denoted as R™, and vectors are often described using
the notation 7.

Each number in the list is called a component, and we use the following definitions for
the sum of two vectors, and the product of a real number and a vector:

aq bl a; + b1 aq caq

a9 b2 as + bQ (45} Cca9
—|— . = . C =

an b, a, + by, an ca,



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Following are some examples of addition and scalar multiplication in R*.

3 0 340 3

-3 ol | =3+2| | -1

o | T|7= | ox7 | 7| 7

4 | 441 5
0 —4(0) 0
N T
o | T ca= | T s

3 —4(3) ~12



Linear Systems, Vector Equations, and Augmented Matrices (LE1)
Definition 1.1.5 A linear equation is an equation of the variables x; of the form

a1r1 + asxy + - - - + apx, = b.

A solution for a linear equation is a Euclidean vector

that satisfies
a181 + asss + -+ -+ aps, =0

(that is, a Euclidean vector whose components can be plugged into the equation).



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.6 In previous classes you likely used the variables z, y, z in equations. However,
since this course often deals with equations of four or more variables, we will often write our
variables as x;, and assume r = x1,y = x5, 2 = 3, w = x4 when convenient.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.7 A system of linear equations (or a linear system for short) is a
collection of one or more linear equations.

111+ A2+ ...+ G1nTy = bl

911+ Q999+ ...+ Aonly — bg

Am1T1 + maZa + . .. + Qyn®n, = bm

Its solution set is given by

S1 S1
S2 S2 | . . Co

is a solution to all equations in the system
Sn Sn



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.8 When variables in a large linear system are missing, we prefer to write the
system in one of the following standard forms:

Original linear system: Verbose standard form: Concise standard form:
T —|—3(L'3 = 3 1$1+01’2+3!L’3 = 3 1 +3£L'3 =
3r1 —2x9+4x3 = 0 3x1 —2x9+4x3 = 0 3x1 — 220+ 43 =

—$2+£L'3:—2 O$1—1$2+1$3:—2 — X2+ x3:—2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.9 It will often be convenient to think of a system of equations as a vector

equation.
By applying vector operations and equating components, it is straightforward to see that

the vector equation

1 0 3 3
W5t 3 + 29 —2 + XT3 4 = 0
0 -1 1 -2

is equivalent to the system of equations

T +3l’3 =
333'1 —2$2+4$3 =0

— I2+ T3 :—2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.10 A linear system is consistent if its solution set is non-empty (that is,
there exists a solution for the system). Otherwise it is inconsistent. O



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Fact 1.1.11 All linear systems are one of the following:

1
1. Consistent with one solution: its solution set contains a single vector, e.g. 2
3
2. Consistent with infinitely-many solutions: its solution set contains infinitely many
1
vectors, e.g. 2—3a [ |laeR
a

3. Inconsistent: its solution set is the empty set, denoted by either {} or ().



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.12 All inconsistent linear systems contain a logical contradiction. Find a
contradiction in this system to show that its solution set is the empty set.

—X1 +2l’2 =35
2.1'1 —41'2 =6



Linear Systems, Vector Equations, and Augmented Matrices (LE1)
Activity 1.1.13 Consider the following consistent linear system.

—I1 + 25(72 = —3
25(71 — 4%2 =6

(a) Find several different solutions for this system:

R Y I Y A B

(b) Suppose we let x5 = a where a is an arbitrary real number. Which of these expressions
for x1 in terms of a satisfies both equations of the linear system?

A z;,=-3a C. 21 =2a—3
B. z;=3 D. 2y =—-4a+6
(c) Given zo = a and the expression you found in the previous task, which of these

describes the solution set for this system?
A.HQ@_S] aER} c.{{a] aER}
a b
a 2a — 3
2 {0 |[oes] o {[23] o]




Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.14 Consider the following linear system.

ZE1+2.172 — Ty = 3
x3—|—4x4 =-2

Substitute o = a and x4 = b, and then solve for z; and z3:

?

r = ! T3 =

Then use these to describe the solution set

a,beR

to the linear system.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Observation 1.1.15 Solving linear systems of two variables by graphing or substitution
is reasonable for two-variable systems, but these simple techniques won’t usually cut it for
equations with more than two variables or more than two equations. For example,

—2x1 —4r9+ x3— 4x4 =-8
ZL‘1+2ZE2+21’3+12ZL‘4 :—]_
$1+2$2+ T3+ 8134 = 1

has the exact same solution set as the system in the previous activity, but we’ll want to learn
new techniques to compute these solutions efficiently.



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Remark 1.1.16 The only important information in a linear system are its coefficients and

constants.
Original linear system: Verbose standard form: Coefficients/constants:
LE1+3$3: 3 1$1+0$2+3$€3: 3 1 03| 3
3, — 2x9 +4x5 = 0 3r1 —2x9+4x3 = 0 3-24] 0

—To + T3 =—2 O0x1 — lag + 1w =2 0—-11|-2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Definition 1.1.17 A system of m linear equations with n variables is often represented by
writing its coefficients and constants in an augmented matrix: the m x n matrix of its
coefficients augmented with the m constant values as a final column.

a11T1+ A1oT2 + ...+ G1aTy

211+ Q92X9 + ...+ Qopnxy,

A1 T1 + oo + . . .

aix a2 a1y | b1
a21 Q22 a2y | bo
Am1 Am2 Amn bm

by
by

+ ATy = bm

Sometimes, we will find it useful to refer only to the coefficients of the linear system (and ig-
nore its constant terms). We call the m xn array consisting of these coefficients a coefficient

matrix.
11 Q12 A1n
Q21  A22 (57
Am1  Am2 Amn



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

The corresponding augmented matrix for this system is obtained by simply writing the
coefficients and constants in matrix form.

Linear system: Augmented matrix:
?)Il —2l‘2+4l'3 = 0 3 —2 4 0

Vector equation:

1 0 3 3
T 3 + T —2 + XT3 4 = 0
0 -1 1 -2



Linear Systems, Vector Equations, and Augmented Matrices (LE1)

Activity 1.1.19 Consider the following augmented matrices. For each of them, decide how
many variables and how many equations the corresponding linear system has.

()
2 1 3|3
1 -2 4/ 3
3 -1 7|-1
(b)
2 1 3|3
1 -2 4/ 3
3 -1 7|-1
3 -1 7|-1
(c)
2 0 3] 3
10 4|3
30 7|1
30 7|1
(d)
2 1 3|3
1 -2 4/ 3
0 0 00
3 -1 7|-1



Row Reduction of Matrices (LE2)

1.2 Row Reduction of Matrices (LE2)

Learning Outcomes

o Explain why a matrix isn’t in reduced row echelon form, and put a matrix in reduced
row echelon form.



Row Reduction of Matrices (LE2)

Activity 1.2.1 Consider the following matrices:

1 0 3| 3 2 5 3
0 -1 1]-2 3 -1 7

(a) Write down a linear system whose augmented matrix is A. Can you write down an-
other?

(b) Write down a linear system whose coefficient matrix is B. Can you write down another?



Row Reduction of Matrices (LE2)

Definition 1.2.2 Two systems of linear equations (and their corresponding augmented ma-
trices) are said to be equivalent if they have the same solution set.

For example, both of these systems share the same solution set { [ 1 } }

3r1— 219 =1 3r1 — 219 =1
$1+4I2 =35 41‘1+2ZE2 =6

Therefore these augmented matrices are equivalent (even though they’re not equal), which

we denote with ~:
3 =21 2 3 =211
1 4 1|5 4 2 16

3 =21 3 =21
1 4|5 4 216



Row Reduction of Matrices (LE2)

Activity 1.2.3 Consider whether these matrix manipulations (A) must keep the same solu-
tion set, or (B) might result in a different solution set for the corresponding linear system.

(a) Swapping two rows, for example:

1 2/4 1 3|5
1 3|5 1 24 r+2y=4 r+3y=>5
r+3y=>5 r+2y=+4
A. Solutions must be the same. B. Solutions might be different.

(b) Swapping two columns, for example:

1 24 2 1|4
1 3|5 3 115 r+2y=4 2 +y=4
r+3y=>5 3xr+y=>5
A. Solutions must be the same. B. Solutions might be different.

(c) Add a constant to every term of a row, for example:

{1 24}N{1+3 2+34+3} x4 2y =4 dr +5y =7
1 3]5 1 3 o T+3y=>5 r+3y=>5
A. Solutions must be the same. B. Solutions might be different.

(d) Multiply a row by a nonzero constant, for example:

[1 24},{3(1) 3(2)3(4@ P4 =3  Bry—12
1315 I 3 g rT+3y=>5 r+3y=>5
A. Solutions must be the same. B. Solutions might be different.
(e) Add one row to another row, for example:
{1 24} { 1 2 4 } T+ 2y =4 Tr Ty="
1 3|5 1+1 3+2|5+4 T3y =5 Yot Ty =7
A. Solutions must be the same. B. Solutions might be different.

(f) Replace a column with zeros, for example:



Row Reduction of Matrices (LE2)

1 214 1 04
1 3|5 1 0|5 r+2y=4 4 Ty="
T+3y=>5 le4 Ty="
A. Solutions must be the same. B. Solutions might be different.

(g) Replace a row with zeros, for example:
1 24 1 24

1 3|5 0 0]0 r+2y=4 x4+ Ty="

r+3y=>5 e+ Ty="

A. Solutions must be the same. B. Solutions might be different.



Row Reduction of Matrices (LE2)

Activity 1.2.4

[=] b e [m]

Observe what happens geometrically when we add a multiple of Ry to Ry
in the below matrix:

0
5 4 -3 2 A 0 1 2 3 4 5
1 2 3 By +0R,—Rs 1 2 3
3 —4|-21 34+0(1) —440(2) | —21+0(3)
112 3
T3 4| -2
Standalone
/ / Embed
] L
4 4
F2 2
% 6 4 2 2 45 8 % 6 4 2 2 awp 8
_2 F -2
-4 -4
Ry:z+2y=3 -6 Ry:x+2y=3 -6
I,jzz-iy:-mla . Ry:3z—4y—-211 -3
=) z - . - 5 .

How does adding row multiples to other rows affect a linear system’s solution set?

A. Solutions must be the same. B. Solutions might be different.


https://tbil.org/AT1-interactive-add-rows.html
https://tbil.org/AT1-interactive-add-rows-if.html

Row Reduction of Matrices (LE2)

Definition 1.2.5 The following three row operations produce equivalent augmented ma-
trices.

1. Swap two rows, for example, R; <> Rs:
1 23 4 516
4 5|6 1 23
2. Multiply a row by a nonzero constant, for example, 2R; — Ry:

IEOEERES

3. Add a constant multiple of one row to another row, for example, Ry — 4Ry — Rs:

H gg} - [4—14(1) 5—24(2)6—34(3)}

Observe that we will use the following notation: (Combination of old rows) — (New row).

O



Row Reduction of Matrices (LE2)

Activity 1.2.6 Each of the following linear systems has the same solution set.

A) B) C)
r+2y+ z =3 20 +by+3z =7 r — z=1
—r— y+ z =1 —r— y+ z =1 y+2z =4
20+5y+3z =7 T+2y+ z =3 y+ z =1
D) E) F)
r+2y+ z =3 r — z =1 r+2y+ 2z =3
y+2z =4 y+2z =4 y+2z =4
20+5y+3z =7 z =3 y+ z =1

Sort these six equivalent linear systems from most complicated to simplest (in your opin-

ion).



Row Reduction of Matrices (LE2)

Activity 1.2.7 Here we've written the sorted linear systems from Activity 1.2.6 as aug-
mented matrices.

2 5 3|7] (1] 2 137 (1] 2 113
~1 -1 1|1 |~ ]| =1 -1 1|1~ 0 1 24|~
1 2 1(3] 2 5 3|7 ] 2 5 3|7
(1] 2 1]3] (1] 0o —1]17 1] o -1 1
~ 10 [1] 2/4|~| 0 [1] 2|4|~| 0 [1] 2] 4
0 1 1|1 | 0 1 1 1] 0 0 —1]-3

Assign the following row operations to each step used to manipulate each matrix to the next:
R3—1R2—>R3 Ro+ 1R, — Ry R1<—>R3

Rs —2R; — R;3 R —2Rs — R;



Row Reduction of Matrices (LE2)

Definition 1.2.8 A matrix is in reduced row echelon form (RREF) if
1. The leftmost nonzero term of each row is 1. We call these terms pivots.
2. Each pivot is to the right of every higher pivot.
3. Each term that is either above or below a pivot is 0.
4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

Every matrix has a unique reduced row echelon form. If A is a matrix, we write RREF(A)
for the reduced row echelon form of that matrix. O



Row Reduction of Matrices (LE2)

Activity 1.2.9 Recall that a matrix is in reduced row echelon form (RREF) if
1. The leftmost nonzero term of each row is 1. We call these terms pivots.
2. Each pivot is to the right of every higher pivot.
3. Each term that is either above or below a pivot is 0.
4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF. For the ones
not in RREF, determine which rule is violated and how it might be fixed.

1 00 3 1 0 4] 3 00 0] 0
A=10 0 1|-1 B=]101 0|-1 C=11220] 3
00 0] O 00 1| 2 0 0 1]-1



Row Reduction of Matrices (LE2)

Activity 1.2.10 Recall that a matrix is in reduced row echelon form (RREF) if
1. The leftmost nonzero term of each row is 1. We call these terms pivots.
2. Each pivot is to the right of every higher pivot.
3. Each term that is either above or below a pivot is 0.
4. All zero rows (rows whose terms are all 0) are at the bottom of the matrix.

For each matrix, mark the leading terms, and label it as RREF or not RREF. For the ones
not in RREF, determine which rule is violated and how it might be fixed.

01017 1004

1023 E=|100/4 F=]1010]|7

D=103 3|-3 00 0/0 00 1]0
000[0



Row Reduction of Matrices (LE2)

Remark 1.2.11 In practice, if we simply need to convert a matrix into reduced row echelon
form, we use technology to do so.

However, it is also important to understand the Gauss-Jordan elimination algorithm
that a computer or calculator uses to convert a matrix (augmented or not) into reduced row
echelon form. Understanding this algorithm will help us better understand how to interpret
the results in many applications we use it for in Chapter 2.



Row Reduction of Matrices (LE2)

Activity 1.2.12 Consider the matrix

2 6 —-16
1 3 -1 2
-1 =3 2 0

Which row operation is the best choice for the first move in converting to RREF?
A. Add row 3 to row 2 (Ry + R3 — R»)
B. Add row 2 to row 3 (R3 + Ry — R3)
C. Swap row 1 to row 2 (Ry +> R»)
D. Add -2 row 2 to row 1 (R — 2Ry — Ry)



Row Reduction of Matrices (LE2)

Activity 1.2.13 Consider the matrix

1] 3 -1 2

2 6 —-16
-1 =3 2 0

Which row operation is the best choice for the next move in converting to RREF?
A. Add row 1 to row 3 (R3 + Ry — R3)
B. Add -2 row 1 to row 2 (Ry — 2Ry — R»)
C. Add 2 row 2 to row 3 (R3 + 2Ry — R3)
D. Add 2 row 3 to row 2 (Ry + 2R3 — R»)



Row Reduction of Matrices (LE2)

Activity 1.2.14 Consider the matrix
0 1
0 1
Which row operation is the best choice for the next move in converting to RREF?
A. Add row 1 to row 2 (Ry + Ry — Rs)
B. Add -1 row 3 to row 2 (Ry — R3 — R»)

C. Add -1 row 2 to row 3 (R3 — Ry — R3)
D. Add row 2 to row 1 (R; + Ry — Ry)



Row Reduction of Matrices (LE2)

Observation 1.2.15 The steps for the Gauss-Jordan elimination algorithm may be summa-
rized as follows:

1. Ignoring any rows that already have marked pivots, identify the leftmost column with
a nonzero entry.

2. Use row operations to obtain a pivot of value 1 in the topmost row that does not
already have a marked pivot.

3. Mark this pivot, then use row operations to change all values above and below the
marked pivot to 0.

4. Repeat these steps until the matrix is in RREF.

In particular, once a pivot is marked, it should remain in the same position. This will
keep you from undoing your progress towards an RREF matrix.



Row Reduction of Matrices (LE2)

Activity 1.2.16 Complete the following RREF calculation (multiple row operations may
be needed for certain steps):

2 3 2 3 ? 07 7 77
A=|-2 1 6 1|~| -2 1 6 1|~ 0 7 7 7
—1 -3 —4 1 ~1 -3 —4 1 0o 7 77

? 0?7 0o 7 7 0 -2 0
~lo 1] 7 2| ~]o0 ] 7 v~-~]011] 2 0
o 77 0o 0 77 0 0 0 1



Row Reduction of Matrices (LE2)

Activity 1.2.17 Consider the matrix

2 4 2 -4
A= -2 -4 1 1
3 6 -1 —4

Compute RREF(A).



Row Reduction of Matrices (LE2)

Activity 1.2.18 Consider the non-augmented and augmented matrices

2 4 2 -4 2 4 2|4
A= -2 -4 1 1 B=|-2 -4 1 1
3 6 -1 —4 3 6 —1|—-4

Can RREF(A) be used to find RREF(B)?
A. Yes, RREF(A) and RREF(B) are exactly the same.
B. Yes, RREF(A) may be slightly modified to find RREF(B).

C. No, a new calculuation is required.



Row Reduction of Matrices (LE2)

Activity 1.2.19 Free browser-based technologies for mathematical computation are avail-
able online.

e Go to https://sagecell.sagemath.org/.

o In the dropdown on the right, you can select a number of different languages. Select
"Octave” for the Matlab-compatible syntax used by this text.

o Typerref([1,3,2;2,5,7]) and then press the button to compute the RREF
1 3 2
of [ 9 5 7 }

o Now try using whitespace to write out the matrix and compute RREF instead:


https://sagecell.sagemath.org/

Row Reduction of Matrices (LE2)

Activity 1.2.20 In the HTML version of this text, code cells are often embedded for your
convenience when RREFs need to be computed.

Try this out to compute RREF l g _03 (15 }



Row Reduction of Matrices (LE2)

Activity 1.2.21 Find three examples of linear systems for which the RREF of their aug-

mented matrices is equal to
—4

1
0 0
0 0

S O =
S O N



Row Reduction of Matrices (LE2)

Activity 1.2.22 Which of the following matrices are not in RREF?

1
A=10 3 3|-3 0
0001

o = O
_ o O
W =

o O =

O = O

o O O

B =T



Counting Solutions for Linear Systems (LE3)

1.3 Counting Solutions for Linear Systems (LE3)

Learning Outcomes

o Determine the number of solutions for a system of linear equations or a vector equation.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.1

(a) Without referring to your Activity Book, which of the four criteria for a matrix to be
in Reduced Row Echelon Form (RREF) can you recall?

(b) Which, if any, of the following matrices are in RREF? You may refer to the Activity
Book now for criteria that you may have forgotten.

10 2]-3 01 0|7 10 14
p:ogg_g Q=110 0|4 R=]101 0|7
0000 0000 00 1]0



Counting Solutions for Linear Systems (LE3)

Remark 1.3.2 We will frequently need to know the reduced row echelon form of matrices
during the remainder of this course, so unless you're told otherwise, feel free to use technology
(see Activity 1.2.19) to compute RREFs efficiently.



Counting Solutions for Linear Systems (LE3)
Activity 1.3.3 Consider the following system of equations.

3r1 — 219+ 1323 = 6
201 —2x9 + 1023 = 2
—x1+ 319 — 623 =11
dr1+ x9+ x5 = 1.

(a) Convert this to an augmented matrix and use technology to compute its reduced row

echelon form:
2 7 2|7 2 7 2|7

~
~
<9 -
~
~

VO A 7 R
RREF | . . | |=|., , .|,

??

~
~)
-~
~)

77

~D
~
-~
~)
~D

(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Activity 1.3.4 Consider the vector equation

3 -2 13 6

x 2 +x =2 +x 10 = 2
-1 210 31 -3 1
3 7 0 -2

(a) Convert this to an augmented matrix and use technology to compute its reduced row

echelon form:
2 72 219 2 2 2|2

~
~)
D -
~

~

VA B,
RREF | , . |, |=

? 7

~
~)

-~

~D

~D

(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. Only one C. Infinitely-many



Counting Solutions for Linear Systems (LE3)

Activity 1.3.5 What contradictory equations besides 0 = 1 may be obtained from the
RREF of an augmented matrix?

A. z =0 is an obtainable contradiction
B. x =y is an obtainable contradiction
C. 0 =17 is an obtainable contradiction

D. 0 =1 is the only obtainable contradiction



Counting Solutions for Linear Systems (LE3)
Activity 1.3.6 Consider the following linear system.

T+ 225 +3x3 =1
2x1 + 4xy +8x3 =10
3r1 + 6xy+1lzs =1

T, 4+ 229 +5x3 = —1

(a) Find its corresponding augmented matrix A and find RREF(A).
(b) Use the RREF matrix to write a linear system equivalent to the original system.

(c) How many solutions must this system have?

A. Zero B. One C. Infinitely-many



Counting Solutions for Linear Systems (LE3)
Fact 1.3.7 By finding RREF(A) from a linear system’s corresponding augmented matriz A,
we can immediately tell how many solutions the system has.
e If the linear system given by RREF(A) includes the contradiction

0=1,

that is, the RREF matriz includes the row
[ 0 --- 0 ‘ 1 } ;
then the system is inconsistent, which means it has zero solutions and we may write

Solution set = {} or  Solution set = ().

If the linear system given by RREF(A) sets each variable of the system to a single

value; that is we have:

Ir1 = S1
To = So
Tp = Sp

(with some possible extra 0 = 0 equations), then the system is consistent with exactly

one solution, and we may write

S1 S1
S9 52
Solution = but Solution set = ]
Sn Sn

Otherwise, the system given by the RREF matrixz must not include a 0 = 1 contradiction
while including at least one equation with multiple variables. This means it is consistent
with infinitely-many different solutions. We’ll learn how to find such solution sets in

Section 1.4.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.8 Consider each of the following systems of linear equations or vector equations.

(a)

(i)
(ii)

(b)

(ii)

(c)

(ii)

T — i) — 31‘3 = 8
3371 — 21‘2 — 5I3 = 17
I — i) - 21’3 = 7

101’1 — 8l‘2 - 211’3 = 65
Explain and demonstrate how to find a simpler linear system that has the same
solution set.

Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

T — 51‘2 — 15 r3 = —8
i) + 31’3 = 1

T = 2

5r1 — Txg — 21lx3 = —10

Explain and demonstrate how to find a simpler linear system that has the same
solution set.

Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.

—2x1 + 229 + baxg = 1
—r1 + X2 4+ 223 = 1
2[L’1 — 2132 + T3 = -7
—2r1 + 229 + 1623 = —10

Explain and demonstrate how to find a simpler linear system that has the same
solution set.

Explain whether this solution set has no solutions, one solution, or infinitely-many
solutions. If the set is finite, describe it using set notation.



Counting Solutions for Linear Systems (LE3)

Activity 1.3.9 In Fact 1.1.11, we stated, but did not prove the assertion that all linear
systems are one of the following:

1
1. Consistent with one solution: its solution set contains a single vector, e.g. 2
3
2. Consistent with infinitely-many solutions: its solution set contains infinitely many
1
vectors, e.g. 2 —3a a€cR
a

3. Inconsistent: its solution set is the empty set, denoted by either {} or ().

Explain why this fact is a consequence of Fact 1.3.7 above.



Linear Systems with Infinitely-Many Solutions (LE4)

1.4 Linear Systems with Infinitely-Many Solutions (LE4)

Learning Outcomes

o Compute the solution set for a system of linear equations or a vector equation with
infinitely many solutions.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.1 Write down any three linear systems and determine if they are consistent,
have a single solution, or have infinitely many solutions.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.2 Consider this simplified linear system found to be equivalent to the system
from Activity 1.3.6:

T1 + 229 =4
T3 = -1

Earlier, we determined this system has infinitely-many solutions.

(a) Let x; = a and write the solution set in the form ! lla€eR

(b) Let x5 = b and write the solution set in the form b ||beR

0

o v
—=]o

(c) Which of these was easier? What features of the RREF matrix [

caused this?



Linear Systems with Infinitely-Many Solutions (LE4)

Definition 1.4.3 Recall that the pivots of a matrix in RREF form are the leading 1s in

each non-zero row.
The pivot columns in an augmented matrix correspond to the bound variables in the
system of equations (z1,x3 below). The remaining variables are called free variables (x;

below).

2 0 4

0 0 ~1
To efficiently solve a system in RREF form, assign letters to the free variables, and then
solve for the bound variables. O



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.4 Find the solution set for the system

2!E1—25E2—61’3+ZE4— Ty = 3
-1+ $2+3I3—$4+25L’5 =-3
T1—2T9— x3+T4+ x5 = 2

by doing the following.
(a) Row-reduce its augmented matrix.

(b) Assign letters to the free variables (given by the non-pivot columns):

(c) Solve for the bound variables (given by the pivot columns) to show that

7 =1+5a+2b
! =1+2a+3b
7 =343b

(d) Replace z; through x5 with the appropriate expressions of a,b in the following set-
builder notation.

x1
T2
T3 a, beR
Ty
Ts




Linear Systems with Infinitely-Many Solutions (LE4)

Remark 1.4.5 Don’t forget to correctly express the solution set of a linear system. Systems
with zero or one solutions may be written by listing their elements, while systems with
infinitely-many solutions may be written using set-builder notation.

e Inconsistent: () or {}

0
o (not Oor | O |)
0
1
o Consistent with one solution: e.g. 2
3
1
o (not just | 2 |)
3
1
o Consistent with infinitely-many solutions: e.g. 2—3a [ |laeR
a

1
o (not just | 2—3a | )
a



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.6 Consider the following system of linear equations.

1 0 -1 -3 -3
T 0 + 29 1 +ZE3 5 + 2y 13 = 12
1 -1 ) —13 —12

(a) Explain how to find a simpler system or vector equation that has the same solution
set.

(b) Explain how to describe this solution set using set notation.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.7 Consider the following system of linear equations.

T — 2333 = =3
5x1 + Ty — Tx3 = -—18
5I1 - ) — 13 I3 = —12
T + 35(72 + 71’3 = —12

(a) Explain how to find a simpler system or vector equation that has the same solution
set.

(b) Explain how to describe this solution set using set notation.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.8 Consider the following linear system, its augmented matrix A, and RREF(A):

rT — i) + T3 = 4
T — 21’3 = -1
i) — 21’3 = -3
x| + 21}2 — 51‘3 = 0
1 -1 1] 4 10 —-11]0
0 1 -2|-1 01 =210
A= 0 1 -2|-3 » RREF(4) = 00 0|1
1 2 =50 00 010

All of the following statements are not accurate or otherwise incorrect; identify what is
problematic about the statements and correct them.

(a) The matrix A is inconsistent.
(b) The linear system has two bound variables and one free variable.

(c) The solution set to the given linear system is {0}.



Linear Systems with Infinitely-Many Solutions (LE4)

Activity 1.4.9 Consider the following linear system, its augmented matrix B, and
RREF(B):

21‘1 — 21’2 — 81‘3 + 31‘4 - 91‘5 = —17
—r + 3 - x4 4+ 2x5 = 6
2x1 — X9 — dxy 4+ x4 — dzxy = -—-10
—x1 + 3x2 + 10z3 4+ Txzs = 6

2 -2 -8 3 -9|-17
-1 0 1 -1 2| 6

B=1| 49 1 5 1 5l _10
1 3 10 0 71| 6

10 -1 0 —1]-3
01 3 0 2|1
RREF(B) =1 o ¢ 1 _1|_3
00 0 0 010

All of the following statements are not accurate or otherwise incorrect; identify what is
problematic about the statements and correct them.

(a) The matrix B is consistent with infinitely many solutions.

a+b—3
—3a—-2b+1
(b) The solution set is given by a
b—3
b

(c) The variables x3,z5 are free. Setting them equal to a,b respectively and solv-
ing for the bound variables, the solution set to the linear system is given by
a+b—3
—3a—-2b+1 a,beR
b—3



Chapter 2

Euclidean Vectors (EV)

Learning Outcomes

What is a space of Euclidean vectors?
By the end of this chapter, you should be able to...

1.

Determine if a Fuclidean vector can be written as a linear combination of a given set
of Euclidean vectors by solving an appropriate vector equation.

. Determine if a set of Euclidean vectors spans R" by solving appropriate vector equa-

tions.
Determine if a subset of R" is a subspace or not.

Determine if a set of Euclidean vectors is linearly dependent or independent by solving
an appropriate vector equation.

Explain why a set of Euclidean vectors is or is not a basis of R".

. Compute a basis for the subspace spanned by a given set of Euclidean vectors, and

determine the dimension of the subspace.

Find a basis for the solution set of a homogeneous system of equations.

66



Linear Combinations (EV1)

2.1 Linear Combinations (EV1)

Learning Outcomes

o Determine if a Euclidean vector can be written as a linear combination of a given set
of Euclidean vectors by solving an appropriate vector equation.



Linear Combinations (EV1)

1 0
Activity 2.1.1 Discuss which of the vectors « = | —1 | and v = 3 is a solution to
2 -1
the given vector equation:
-1 2 1 —1
I 2 + To —1 —|— XT3 —1 = 1

3 0 1 )



Linear Combinations (EV1)
Note 2.1.2 We've been working with Euclidean vector spaces of the form

T

n L2
R" = . Il,l‘g,...,InER

Tn

There are other kinds of vector spaces as well (e.g. polynomials, matrices), which we will
investigate in Section 3.5. But understanding the structure of Fuclidean vectors on their
own will be beneficial, even when we turn our attention to other kinds of vectors.

We will use the phrase vector space freely from this point on, even while delaying a formal

definition. Readers can choose to interpret this to mean Euclidean vector space, i.e R™ for
some n, if they wish; we do this as all of the statements we make using the term vector
space are also true for all vector spaces as defined in Definition 3.5.7.

1 -3
Likewise, when we multiply a vector by a real number, asin -3 | —1 | = 3 |, we
2 —6

refer to this real number as a scalar.

We often use letters like V' and W to refer to vector spaces (Euclidean or otherwise)



Linear Combinations (EV1)

Definition 2.1.3 A linear combination of a set of vectors {v},vs,...,0,} is given by
1 + coUy + - - - + ¢, U, for any choice of scalar multiples ¢y, ca, ..., cp.
3 1 1
For example, we can say | 0 | is a linear combination of the vectors | —1 | and | 2
5 2 1
since
3 1
0| = 1 +11 2
5 1



Linear Combinations (EV1)

Definition 2.1.4 The span of a set of vectors is the collection of all linear combinations of
that set:

span{y, Uy, ..., Uy} = {c10] + colp + - - - + ¢, U, | ¢; € R}
For example:
1 1 1 1
span 11,1 2 =<cal| -1 |4+0b]| 2 a,beR
2 1 2 1



Linear Combinations (EV1)

Activity 2.1.5 Consider span { [ é 1 }

(a) Sketch the four Euclidean vectors

1 1 1 3 1 0 1 -2
el=[a] sla]= 8] ofe)-[a] 2] (5]
in the xy plane by placing a dot at the (x,y) coordinate associated with each vector.

(b) Sketch a representation of all the vectors belonging to

{4}~ (4] o)

in the zy plane by plotting their (x,y) coordinates as dots. What best describes this
sketch?

A. A line B. A plane C. A parabola D. A circle



Linear Combinations (EV1)

Remark 2.1.6 It is important to remember that

{’171,’(72, e ,Un} % span{Ul,'UQ, e ,Un}
For example,
1 1
-1 1,1 2
2 1

is a set containing exactly two vectors, while

1 1 1 1
span 11, 2 =cal|l -1 |4+0b]| 2 a,belR
2 1 2 1

is a set containing infinitely-many vectors.



Linear Combinations (EV1)

Activity 2.1.7 Consider span { [ é 1 , [ _11 ] }

(a) Sketch the following five Euclidean vectors in the zy plane.

ORI T R B A NI
Afteli]e S fieale)

(b) Sketch a representation of all the vectors belonging to

IR

in the zy plane. What best describes this sketch?

a,bER}

A. A line B. A plane C. A parabola D. A circle



Linear Combinations (EV1)

Activity 2.1.8 Sketch a representation of all the vectors belonging to

span { { _64 ] , [ _23 } } in the zy plane. What best describes this sketch?

A. A line

B. A plane

C. A parabola
D. A cube



Linear Combinations (EV1)

Activity 2.1.9 Consider the following questions to discover whether a Euclidean vector
belongs to a span.

-1 1 -1
(a) The Euclidean vector | —6 | belongs to span 0o |, -3 exactly when
1 -3 2
there exists a solution to which of these vector equations?
[ —1 ] [ 1 ] [ —1 ]
A. T —6 —+ X9 0 = -3
1] | =3 | | 2
[ 1] [ —1 ] [ —1 ]
B.xy| 0 | 42| =3 | =| —6
-3 | | 2 1]
[ —1 ] [ —1 ] 1
| 2 1] -3

(b) Use technology to find RREF of the corresponding augmented matrix, and then use
that matrix to find the solution set of the vector equation.

-1 1 -1
(c) Given this solution set, does | —6 | belong to span 0o |, -3 ?
1 -3 2



Linear Combinations (EV1)
Observation 2.1.10 The following are all equivalent statements:
o The vector 5belongs to span{vy, ..., U, }.
« The vector b is a linear combination of the vectors U1y ..., Up.
o The vector equation =19} + - - - + x,0, = b is consistent.

o The linear system corresponding to [171 - 5} is consistent.

« RREF [171 e Up | 5} doesn’t have a row [0 --- 0] 1] representing the contradiction 0 =
1.



Linear Combinations (EV1)

Activity 2.1.11 Consider this claim about a vector equation:

—6 1 3 2 —4
2 |is a linear combination of the vectors | 0 |, | O [,] 0 |, and 1
—6 2 6 4 -5

(a) Write a statement involving the solutions of a vector equation that’s equivalent to this

claim.
(b) Explain why the statement you wrote is true.

c) Since your statement was true, use the solution set to describe a linear combination of
1 3 2 —4 —6
Of(,{01],10]{, and 1 that equals 2
2 6 4 -5 —6



Linear Combinations (EV1)

Activity 2.1.12 Consider this claim about a vector equation:

-5 1 3 2 —4
—1 | belongs to span Of(,]0],0{, 1
-7 2 6 4 -5

(a) Write a statement involving the solutions of a vector equation that’s equivalent to this

claim.

xplain w e statement you wrote is false, to conclude that the vector does no
b) Explai hy the stat ty te is false, t lude that th tor d t
belong to the span.



Linear Combinations (EV1)

Activity 2.1.13 Before next class, find some time to do the following:

(a) Without referring to your activity book, write down the definition of a linear combi-
nation of vectors.

1 —1 ?
(b) Let = | 2 | and ¥ = | 3 |. Write down an example w; = | 7 | of a linear
0 0 7
.? T
combination of @, v. Then write down an example ws = | 7 | that is not a linear
9
combination of ), v. i
1 —1 ] ?
(c) Draw a rough sketch of the vectors @ = | 2 |, ¥ = 3 |, w = | 7|, and
0 0 ?

?
wy = | 7 | in R3.
?



Spanning Sets (EV2)
2.2 Spanning Sets (EV2)

Learning Outcomes

o Determine if a set of Euclidean vectors spans R™ by solving appropriate vector equa-
tions.



Spanning Sets (EV2)

Activity 2.2.1 Given a set of ingredients and a meal, a recipe is a list of amounts of each
ingredient required to prepare the given meal.

(a) Use the words vector and linear combination to create a new statement that is analo-
gous to one above.

(b) Building on your analogy, what role might the word span play?



Spanning Sets (EV2)

Observation 2.2.2 Any single non-zero vector/number x in R! spans R!, since R! =
{cz|c e R}.

~

Y

< |

Figure 1 An R! vector



Spanning Sets (EV2)

Activity 2.2.3 How many vectors are required to span R?? Sketch a drawing in the zy
plane to support your answer.

Figure 2 The zy plane R?
A1l D. 4
B. 2
C. 3 E. Infinitely Many



Spanning Sets (EV2)

Activity 2.2.4 How many vectors are required to span R3?

AN

Figure 3 R3 space
Al D. 4
B. 2
C. 3 E. Infinitely Many

~



Spanning Sets (EV2)

Fact 2.2.5 At least n vectors are required to span R™.

A
v

v

Figure 4 Failed attempts to span R"™ by < n wvectors



Spanning Sets (EV2)

Activity 2.2.6 Consider the question: Does every vector in R3 belong to

1 —2 —2
span —14{,{ 0 |, —2 ?
0 1 2
[ 7] 1] [-2] [ -2]
(a) Determine if | —3 | belongs to span —1(,{ 0 |,] =2
= o | 1] | 2]
[0 ] 1] [-2] [ -2
(b) Determine if | —4 | belongs to span —1({,{ 0 |,] =2
| 3] o L1 ] L2 ]
[ 2 1 —2 —2
(c) Determine if | 5 | belongs to span 11,1 0 |, -2
7 0 1 2




Spanning Sets (EV2)

Activity 2.2.7 We'd prefer a more methodical method to decide if every vector in R™ belongs
to some spanning set, compared to the guess-and-check method we used in Activity 2.2.6.

? 1 —2 —2
(a) An arbitrary vector | 7 | belongs to span 11,1 0 |,] =2 provided
? 0 1 2
the equation
1 —2 —2 ?
I —1 —f- T O —|— T3 —2 = ‘.)
0 1 2 ?

has...

A. no solutions.
B. exactly one solution.
C. at least one solution.
D. infinitely-many solutions.
(b) We're guaranteed at least one solution if the RREF of the corresponding augmented

matrix has no contradictions; likewise, we have no solutions if the RREF corresponds
to the contradiction 0 = 1. Given

1 =2 =27 10 2|7
-1 0 =27 |~101 27
o 1 2|7 0007

we may conclude that the set does not span all of R? because...

A. the row [012] 7] prevents a contradiction.
012]7

[ ]
B [ | allows a contradiction.
C. the row [000| 7] prevents a contradiction.
D [ ]

. the row

. the row [000| 7] allows a contradiction.



Spanning Sets (EV2)
Fact 2.2.8 The set {¥},...,U,} spans all of R™ exactly when the vector equation

is consistent for every vector .
Likewise, the set {Uy,...,0,} fails to span all of R"™ exactly when the vector equation

is inconsistent for some vector .

Note these two possibilities are decided based on whether or not the RREF of the vector
equation’s coefficient matriz (that is, RREF[U; ... 4,]) has either all pivot rows, or at least
one non-pivot Tow (a row of zeroes):

1 -2 =2 1
-1 0 =2{~10
0

0
1
0o 1 2 0

S NN



Spanning Sets (EV2)

Activity 2.2.9 Consider the set of vectors S
2 1 1 0 3
g , _34 , _73 , ? , 173 and the question “Does R* = span S?”
-1 0 -1 7 16

(a) Rewrite this question in terms of the solutions to a vector equation.

(b) Answer your new question, and use this to answer the original question.



Spanning Sets (EV2)

Activity 2.2.10 Let 0, %, U3 € R” be three Euclidean vectors, and suppose @ is another
vector with @ € span {#;, Uy, ¥i3}. What can you conclude about span {u, ¥/}, Uy, i3} 7

A. span {W, v, Vs, U3} is larger than span {v}, Uy, U3}.
B. span {w, 01, U, U3} is the same as span {0y, U, U3 }.

C. span {w, Uy, U, U3} is smaller than span {7, Us, U3}.



Spanning Sets (EV2)

Activity 2.2.11 One of our important results in this lesson is Fact 2.2.5, which states that
a set of n vectors is required to span R". While we developed some geometric intuition for
why this true, we did not prove it in class. Before coming to class next time, follow the steps
outlined below to convince yourself of this fact using the concepts we learned in this lesson.

(a) Let {#1,...,7,} be a set of vectors living in R"™ and assume that m < n. How many
rows and how many columns will the matrix [¢; - - - ¥,] have?

(b) Given no additional information about the vectors v, ..., 7,, what is the maximum
possible number of pivots in RREF[7; ... 0,]?

(c) Conclude that our given set of vector cannot span all of R".



Subspaces (EV3)

2.3 Subspaces (EV3)

Learning Outcomes

o Determine if a subset of R™ is a subspace or not.



Subspaces (EV3)
Activity 2.3.1 Consider the linear equation

r+2y+2=0.

1 1
(a) Verify that both ¥= | —1 | and W/ = | 0 | are solutions.
1 —1

(b) Is the vector 2/ — 3 also a solution?



Subspaces (EV3)

Observation 2.3.2 Recall that if S = {#},...,1,} is subset of vectors in R™, then span(.S)
is the set of all linear combinations of vectors in S. In EV2 (Section 2.2), we learned how to
decide whether span(S) was equal to all of R™ or something strictly smaller.



Subspaces (EV3)

Activity 2.3.3 Let S denote a set of vectors in R™ and suppose that @, v € span(S), ¢ € R
and that @ € R™. Which of the following vectors might not belong to span(S)?

=1}

£l
+  +
L8

o o w >
)



Subspaces (EV3)
Definition 2.3.4 A homogeneous system of linear equations is one of the form:

a1+ apxs+ ...+ apx, = 0

a91L1 + AoTo+ ...+ GonZT, = 0

A1 L1+ 2o + ...+ Ay, =0
This system is equivalent to the vector equation:
210+ apty, =0
and the augmented matrix:

a1 aiz -+ A, |0
a1 Q2 -+ Ggp | O

Am1l Am2 ° Gmn O



Subspaces (EV3)

Activity 2.3.5 Consider the homogeneous vector equation x19; + - - - + z,U, = 0.

(a) Is this equation consistent?

A. no.

B. yes.

C. more information is required.
ay by

(b) Note thatif | : | and | : | are both solutions, we know that

aTL bn
a1171+---+an27n:6and b1171++bn17n:6
Therefore by adding these equations:

(afl ‘I’ bl)gl + T + (an + bn)ﬁn = 67

ay + bl
we may conclude that the vector : is...

a, + b,
A. another solution.
B. not a solution.

C. is equal to 0.
(c) Similarly, if ¢ € R, then since multiplying by ¢ yields:
(cal)ﬁl + -+ (C(In)’(_fn = 6,

Caq
we may conclude that the vector : is...

cay,

another solution.
not a solution.

is equal to 0.

S aw >

The empty set.



Subspaces (EV3)

Observation 2.3.6 If S is any set of vectors in R”, then the set span(S) has the following
properties:

o the set span(S) is non-empty.

o the set span(.S) is closed under addition: for any @, ¢ € span(S), the sum @ + ¥/ is also
in span(.5).

o the set span(S) is closed under scalar multiplication: for any @ € span(S) and scalar
¢ € R, the product c# is also in span(S).

Likewise, if W is the solution set to a homogenous vector equation, it too satisfies:
o the set W is non-empty.
o the set W is closed under addition: for any «,v € W, the sum « + v is also in W.

o the set span(.S) is closed under scalar multiplication: for any @ € W and scalar ¢ € R,
the product cu is also in W.



Subspaces (EV3)

Definition 2.3.7 A subset W of a vector space is called a subspace provided that it satisfies
the following properties:

o the subset is non-empty.
o the subset is closed under addition: for any u,v € W, the sum « + ¥ is also in W.

o the subset is closed under scalar multiplication: for any @ € W and scalar ¢ € R,
the product cu is also in W.



Subspaces (EV3)

Observation 2.3.8 Note the similarities between a planar subspace spanned by two non-
colinear vectors in R?, and the Euclidean plane R?. While they are not the same thing (and
shouldn’t be referred to interchangably), algebraists call such similar spaces isomorphic;
we’ll learn what this means more carefully in a later chapter.

A

~-

~

Figure 5 A planar subset of R® compared with the plane R2.



Subspaces (EV3)

x
Activity 2.3.9 Let W = Y r+2y+2=0
z
(a) Is W the empty set?
x a
(b) Let’s assume that ¥ = | y | and @ = | b | are in W. What are we allowed to
z
assume?
Al z+2y+2=0. C. Both of these.
B.a+2b+c=0. D. Neither of these.
r+a
(c) Which equation must be verified to show that ¥+ @ = | y+0b | also belongs to W?
z+c

(d)
(e)

()

(2)

A (z+a)+2y+b)+(2+c)=0.
B.z+a+2y+b+2+c=0.
C.rx4+2y+z=a+2b+c

Use the assumptions from (a) to verify the equation from (b).

Is W is a subspace of R3?

A. Yes B. No C. Not enough informa-
tion
kx
Show that k0= | ky | also belongs to W for any k € R by verifying (kz) + 2(ky) +
kz

(kz) = 0 under these assumptions.

Is W is a subspace of R3?

A. Yes B. No C. Not enough informa-
tion
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x
Activity 2.3.10 Let W = Y r+2y+z=4
z

(a) Is W the empty set?

(b) Which of these statements is valid?

A. e W, and € W, so W is a subspace.

e W, and e W, so W is not a subspace.

e W, but Z W, so W is a subspace.

I

G G G A
I

N DN DO N DO DN RO DO )
L

D. e W, but ¢ W, so W is not a subspace.

(c) Which of these statements is valid?

(a) e W, and € W, so W is a subspace.

e W, and e W, so W is not a subspace.

e W, but ¢ W, so W is a subspace.

I

— o b b
I

o O O O OO oo o oo o
L

e W, but ¢ W, so W is not a subspace.
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Remark 2.3.11 In summary, any one of the following is enough to prove that a nonempty
subset W is not a subspace:

o Find specific values for @, € W such that « +v ¢ W.
« Find specific values for ¢ € R, v € W such that cv ¢ W.
« Show that 0 & W.

If you cannot do any of these, then W can be proven to be a subspace by doing all of
the following:

1. Show that W is non-empty.
2. For all 7,4 € W (not just specific values), @+ v € W.

3. For all ¥ € W and ¢ € R (not just specific values), ctv € W.



Subspaces (EV3)

Activity 2.3.12 Consider these subsets of R3:

x x x
R = y | |ly=2z+1 S = y | |y=|z T = y | |lz=u1zy
z z z

(a) Show R isn’t a subspace by showing that 0 ¢ R.
(b) Show S isn’t a subspace by finding two vectors #, 7 € S such that @+ 7 & S.

(c) Show T isn’t a subspace by finding a vector ¥ € T" such that 20 ¢ T.



Subspaces (EV3)

Activity 2.3.13 Consider the following two sets of Euclidean vectors:

[ R N 3

Explain why one of these sets is a subspace of R? and one is not.



Subspaces (EV3)

Activity 2.3.14 Consider the following attempted proof that

=l

is closed under scalar multiplication.

x—i—y:xy}

Let {Z:} € U, so we know that z +y = zy. We want toshowk[;} =

[ e ] € U, that is, (kz) + (ky) = (kx)(ky). This is verified by the following

ky
calculation:
(kz) + (ky) = (kx)(ky)
k(z +y) = Kxy
Ofk(z +y)] = 0[k*zy]
0=0

Is this reasoning valid?

A. Yes B. No
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Remark 2.3.15 Proofs of an equality LEFT = RIGHT should generally be of one of these
forms:

1. Using a chain of equalities:

LEFT = -

= RIGHT
Alternatively:

LEFT = RIGHT = - --

= SAME = SAME

2. When the assumption THIS = THAT is already known or assumed to be true :

THIS = THAT

U

LEFT = RIGHT

4
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Remark 2.3.16 Recall that in Activity 2.2.1 we used the words wvector, linear combination,
and span to make an anology with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.



Subspaces (EV3)

Activity 2.3.17

(a) Given the set of ingredients S = {flour, yeast, salt, water, sugar, milk}, how should we
think of the subspace span(S)?

(b) What is one meal that lives in the subspace span(.S)?

(c) What is one meal that does not live in the subspace span(S)?



Subspaces (EV3)

Activity 2.3.18 Let

8

W = r+y=32+2w

IS

w

The set W is a subspace. Below are two attempted proofs of the fact that W is closed under
vector addition. Both of them are invalid; explain why.

2
LU= _11 . Then both #,w are elements of W. Their sum is

—1

(a) Let 4=

[ N N

]
|

SN W W

and since
3+43=3-(2)+2-(0),

it follows that 0 is also in W and so W is closed under vector addition.

T a T+a
Y b . y+b | . . .
(b) If 2| | atein W, we need to show that vrc |8 also in W. To be in W,
w d w+d
we need
(x4a)+ (y+b) =3(z+c)+2(w+d).
Well, if

(x+a)+ (y+0b) =3(z+c) +2(w +d),
then we know that

r+y—3z—2w+a+b—3c—2d=0

by moving everything over to the left hand side. Since we are assumming that = +y —
3z—2w=0and a+b—3c—2d =0, it follows that 0 = 0, which is true, which proves
that vector addition is closed.
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2.4 Linear Independence (EV4)

Learning Outcomes

o Determine if a set of Euclidean vectors is linearly dependent or independent by solving
an appropriate vector equation.



Linear Independence (EV4)

Activity 2.4.1 Consider the vector equation

1 2 -1 —1
il 1 + X9 0 + x3 2 = 7
1 —1 0 6
3] 1
(a) Decide which of | —1 | or | 1 | is a solution vector.
2 1

(b) Consider now the following vector equation:

1 2 -1 -1
vi| 1| 4+y| O | +ys| 2 | 4+ya| 7 | =0.
1 -1 0 6

How is this vector equation related to the original one?

c) Use the solution vector you found in part (a) to construct a solution vector to this new
equation.



Linear Independence (EV4)

Activity 2.4.2 Consider the two sets

2 1 2
s={|3],]1 T={1|3],
1 4 1

Which of the following is true?
A. span S is bigger than spanT.
B. span S and spanT are the same size.

C. span S is smaller than spanT.



Linear Independence (EV4)

Definition 2.4.3 We say that a set of vectors is linearly dependent if one vector in the
set belongs to the span of the others. Otherwise, we say the set is linearly independent.

Figure 6 A linearly dependent set of three vectors

You can think of linearly dependent sets as containing a redundant vector, in the sense
that you can drop a vector out without reducing the span of the set. In the above image, all
three vectors lay in the same planar subspace, but only two vectors are needed to span the
plane, so the set is linearly dependent. O
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Activity 2.4.4 Consider the following three vectors in R3:

-2 1 —2
=1 0 |[,to=|3],andv5=1| 5
0 0 4
?
(a) Let @ = 3271 - 172 - 5173 = ? . The set {771, 172, 173,117} is...

?

A. linearly dependent: at least one vector is a linear combination of others
B. linearly independent: no vector is a linear combination of others

(b) Find

-2 -2 7

1
RREF [0y @ ¥5 W |=RREF| 0 3 5
0O 0 4 7
What does this tell you about solution set for the vector equation z1v; 4+ x9Us + 2303 +

A. Tt is inconsistent.
B. It is consistent with one solution.

C. It is consistent with infinitely many solutions.
(c) Which of these might explain the connection?

A. A pivot column establishes linear independence and creates a contradiction.

B. A non-pivot column both describes a linear combination and reveals the number
of solutions.

Q

. A pivot row describes the bound variables and prevents a contradiction.

D. A non-pivot row prevents contradictions and makes the vector equation solvable.
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Fact 2.4.5 For any vector space, the set {vUy,...0,} is linearly dependent if and only if the
vector equation x101 + XoUy + «+ - + XU, = 0 is consistent with infinitely many solutions.
Likewise, the set of vectors {v7,...0,} is linearly independent if and only the vector
equation
T1U1 + 29T + - - - + Ty Uy, =0

I 0

has exactly one solution: : =
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Activity 2.4.6 Find

2 2 3 =1 4|0

3 0 13 10 3|0

RREF 0O 0 7 7 0]0

-1 3 16 14 1|0

and mark the part of the matrix that demonstrates that

2 2 3 -1 4
g_ 3 0 13 10 3
N O "o’ 717 717160
-1 3 16 14 1

is linearly dependent (the part that shows its linear system has infinitely many solutions).
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Observation 2.4.7 Compare the following results:

e A set of R™ wvectors {oi,...7,} is linearly independent if and only if

RREF [ v ... U, } has all pivot columns.

« Aset of R™ vectors {71, ... 7,} is linearly dependent if and only if RREF [ @, ... 4, ]
has at least one non-pivot column.

o A set of R™ vectors {¥},...7,} spans R™ if and only if RREF [ ... Uy } has all
pivot rows.

o A set of R™ vectors {7y,...7,} fails to span R™ if and only if RREF [ U ... Uy ]

has at least one non-pivot row.
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Activity 2.4.8

(a) Write a statement involving the solutions of a vector equation that’s equivalent to each

claim:
(T 171 57 9]

(i) “The set of vectors _01 , g : 161 is linearly independent.”
L[ -1 1] [ 3 ])
(175797

(ii) “The set of vectors _01 , g , 161 is linearly dependent.
L1 1] [ 3 ]}

(b) Explain how to determine which of these statements is true.
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Activity 2.4.9 What is the largest number of R* vectors that can form a linearly independent
set?

A3 C. 5

D. You can have infinitely many vectors
B. 4 and still be linearly independent.
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Activity 2.4.10 Is it possible for the set of Euclidean vectors {#;, ¥y, . . . , U, 6} to be linearly
independent?

A. Yes B. No



Linear Independence (EV4)

Remark 2.4.11 Recall that in Activity 2.2.1 we used the words wvector, linear combination,
and span to make an anology with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.



Linear Independence (EV4)

Activity 2.4.12 Consider the statement: The set of vectors {¥}, U, U3} is linearly indepen-
dent because the vector v3 is a linear combination of v; and #,. Construct an analogous
statement involving ingredients, meals, and recipes, using the terms linearly independent
and linear combination.



Linear Independence (EV4)

Activity 2.4.13 The following exercises are designed to help develop your geometric intution
around linear dependence.

(a) Draw sketches that depict the following:

o Three linearly independent vectors in R?.

o Three linearly dependent vectors in R3.

(b) If you have three linearly dependent vectors, is it necessarily the case that one of the
vectors is a multiple of the other?



Identifying a Basis (EV5)
2.5 Identifying a Basis (EV5)

Learning Outcomes

o Explain why a set of Euclidean vectors is or is not a basis of R".
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Remark 2.5.1 Recall that in Activity 2.2.1 we used the words wector, linear combination,
and span to make an anology with recipes, ingredients, and meals. In this analogy, a recipe
was defined to be a list of amounts of each ingredient to build a particular meal.
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Activity 2.5.2 Consider the following set of ingredients:
S = {tomato, olive oil, dough, cheese, pizza sauce, garlic}
(a) Does "pizza” live inside of span(S)?
(b) Identify which ingredients in S make the set linearly dependent.

(c) Can you think of a subset S” of S that is linearly independent and for which "pizza” is
still in span S’?



Identifying a Basis (EV5)

Activity 2.5.3 Consider the set of vectors

([ 3 2 0 1 3
—2 4 —16 2 3
5= 1 ({17 =5 {30
L[ 0 1 -3 0 1
[ 5
(a) Express the vector g as a linear combination of the vectors in S, i.e. find scalars
1
such that
5 3 2 0 1 3
20 | -2 42 4 4 —16 47 2 42 3
0 —1 1 =5 13 10
1 0 1 -3 0 1
5
(b) Find a different way to express the vector (2) as a linear combination of the vectors
1
in S.
8
(c) Consider another vector g . Without computing the RREF of another matrix, how
5
many ways can this vector be written as a linear combination of the vectors in S?
A. Zero.
B. One.

C. Infinitely-many.

D. Computing a new matrix RREF is necessary.
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Activity 2.5.4 Let’s review some of the terminology we’ve been dealing with...

(a) If every vector in a vector space can be constructed as one or more linear combinations
of vectors in a set .S, we can say...
A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.
(b) If the zero vector 0 can be constructed as a unique linear combination of vectors in a
set S (the combination multiplying every vector by the scalar value 0), we can say...
A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.
(c) If every vector of a vector space can either be constructed as a unique linear combination
of vectors in a set S, or not at all, we can say...
A. the set S spans the vector space.
B. the set S fails to span the vector space.
C. the set S is linearly independent.
D. the set S is linearly dependent.
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Definition 2.5.5 A basis of a vector space V is a set of vectors S contained in V' for which

1. FEwery vector in the vector space can be expressed as a linear combination of the vectors
in S.
2. For each vector ¢ in the vector space, there is only one way to write it as a linear

combination of the vectors in S.

These two properties may be expressed more succintly as the statement "Every vector in V'
can be expressed uniquely as a linear combination of the vectors in S”. O
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Observation 2.5.6 In terms of a vector equation, a set S = {¢},...,7,} is a basis of a
vector space if the vector equation

6+t = @

has a unique solution for every vector w in the vector space.
Put another way, a basis may be thought of as a minimal set of “building blocks” that
can be used to construct any other vector of the vector space.
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Activity 2.5.7 Let S be a basis (Definition 2.5.5) for a vector space. Then...

A.

B
C.
D

the set S must both span the vector space and be linearly independent.

. the set S must span the vector space but could be linearly dependent.

the set S must be linearly independent but could fail to span the vector space.

. the set S could fail to span the vector space and could be linearly dependent.
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Activity 2.5.8 The vectors

1 0
1=1(1,0,00=| 0 7=(0,1,00=| 1 k=(0,0,1)=
0 0

form a basis {%,j’, l;:} used frequently in multivariable calculus.
Find the unique linear combination of these vectors

2o+ 75+ 7k

that equals the vector
3

(3,-2,4) = | —2
4

in xyz space.
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Definition 2.5.9 The standard basis of R” is the set {€},...,é,} where

1 0 0
0 1 0
. 0 . 0 . 0
€1 = . €2 = . €n = .
0 0 0
0 0 1

In particular, the standard basis for R? is {&, &, &} = {i, J, ]AC}
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Activity 2.5.10 Take the RREF of an appropriate matrix to determine if each of the
following sets is a basis for R*.

()

(b)

(d)

S aw > S aw > S aw >

&

S O O
O;HO
O;OO
_ o O O

A basis, because it both spans R* and is linearly independent.
Not a basis, because while it spans R*, it is linearly dependent.
Not a basis, because while it is linearly independent, it fails to span R*.

Not a basis, because not only does it fail to span R*, it’s also linearly dependent.

2 2 4 -3

3 0 3

O[]0 ["[0]"
3 2

w = O

-1

A basis, because it both spans R* and is linearly independent.
Not a basis, because while it spans R?, it is linearly dependent.
Not a basis, because while it is linearly independent, it fails to span R%.

Not a basis, because not only does it fail to span R*, it’s also linearly dependent.

2 2 3 -1 4
3 0 13 10 3
O {710’ 717 7 17160
—1 3 16 14 2

A basis, because it both spans R* and is linearly independent.
Not a basis, because while it spans R?, it is linearly dependent.
Not a basis, because while it is linearly independent, it fails to span R%.

Not a basis, because not only does it fail to span R*, it’s also linearly dependent.

S W N
N O W

-1

Tt = O W

. A basis, because it both spans R* and is linearly independent.

Not a basis, because while it spans R*, it is linearly dependent.



(e)

a

S aw >

Identifying a Basis (EV5)

Not a basis, because while it is linearly independent, it fails to span R%.

Not a basis, because not only does it fail to span R*, it’s also linearly dependent.

W — O~

A basis, because it both spans R* and is linearly independent.
Not a basis, because while it spans R?, it is linearly dependent.
Not a basis, because while it is linearly independent, it fails to span R*.

Not a basis, because not only does it fail to span R*, it’s also linearly dependent.



Identifying a Basis (EV5)

Activity 2.5.11 If {), U, U3, U4 } is a basis for R?, that means RREF[v) U, U3 U] has a pivot
in every row (because it spans), and has a pivot in every column (because it’s linearly

independent).
What is RREF [171 172 ?73 174]?

RREF (6, 0 ¥ 0] = |
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Fact 2.5.12 The set {v}, ..., Uy} is a basis for R™ if and only if m = n and RREF[v, ... @] =
10 ... 0

01 ...0
00 ... 1
That is, a basis for R™ must have exactly n vectors and its square matrix must row-reduce

to the so-called identity matrix containing all zeros except for a downward diagonal of
ones. (We will learn where the identity matriz gets its name in a later module.)
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Activity 2.5.13 Let S denote a set of vectors in R". Without referring to your Activity
Book, write down:

(a) The definition of what it means for S to be linearly independent.
(b) The definition of what it means for S to span R".

(c) The definition of what it means for S to be a basis for R™.
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Activity 2.5.14 You are going on a trip and need to pack. Let S denote the set of items
that you are packing in your suitcase.

(a) Give an example of such a set of items S that you would say ”spans” everything you
need, but is linearly dependent.

(b) Give an example of such a set of items S that is linearly independent, but does not
"span” everything you need.

(c) Give an example of such a set S that you might reasonably consider to be a "basis” for
what you need?



Subspace Basis and Dimension (EV6)

2.6 Subspace Basis and Dimension (EV6)

Learning Outcomes

o Compute a basis for the subspace spanned by a given set of Euclidean vectors, and
determine the dimension of the subspace.
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Activity 2.6.1 Consider the set S of vectors in R* given by

(a) Is the set S linearly independent or linearly dependent?
(b) How would you describe the subspace span .S geometrically?

(c) What do the spaces span S and R? have in common? In what ways do they differ?
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Observation 2.6.2 Recall from section Section 2.3 that a subspace of a vector space is
the result of spanning a set of vectors from that vector space.

Recall also that a linearly dependent set contains “redundant” vectors. For example, only
two of the three vectors in Figure 14 are needed to span the planar subspace.
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Activity 2.6.3 Consider  the subspace of R* given by W =
2 2 2 [ 1
span 3 0 -3 5
0|’ 1 12 "l -1
1 -1 -3 | 0
(2 2 2 1
3 0 -3 5 . .
(a) Mark the column of RREF 0 1 9 _1 that shows that WW’s spanning set is
1 -1 -3 0

linearly dependent.

(b) What would be the result of removing the vector that gave us this column?

A. The set still spans W, and remains linearly dependent.
B. The set still spans W, but is now also linearly independent.
C. The set no longer spans W, and remains linearly dependent.

D. The set no longer spans W, but is now linearly independent.
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Definition 2.6.4 Let W be a subspace of a vector space. A basis for W is a linearly
independent set of vectors that spans W (but not necessarily the entire vector space). O
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Observation 2.6.5 So given a set S = {vi,...,9U,}, to compute a basis for the
subspace span S, simply remove the vectors corresponding to the non-pivot columns of
RREF[0; ... 9,,]. For example, since

12 0 1 2 0 1
RREF |2 4 -2 2| =] 0 0 1
36 -2 1 0O 0 0 0
1 2 0 1 1 0
the subspace W = span 20,14, —-21|,] 2 has 2 1, —2 as a
3 6 -2 1 3 -2

basis.



Subspace Basis and Dimension (EV6)

Activity 2.6.6

(a) Find a basis for span S where

) 9 p) 1
3 0 -3 5
S = ol 1 || 2 || =1
1 -1 —3 0

(b) Find a basis for spanT where

= O N
|
w
ot

—_ O W N



Subspace Basis and Dimension (EV6)

Observation 2.6.7 Even though we found different bases for them, span .S and spanT" are
exactly the same subspace of R*, since

2 2 2 1 2 2 1 2
3 0 -3 5 0 -3 5 3

5= o1’ 1 {1 2 ("] -1 N 1 ['] 2 || -1]1"(60 =T
1 -1 -3 0 -1 -3 0 1

Thus the basis for a subspace is not unique in general.
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Fact 2.6.8 Any non-trivial real vector space has infinitely-many different bases, but all the
bases for a given vector space are exactly the same size.
For example,

1 0 1 1 2 3
{€1, e, €3} and o, 1],]1 and 0 [, —21,] =2
0 0 1 -3 1 5

are all valid bases for R®, and they all contain three vectors.
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Definition 2.6.9 The dimension of a vector space or subspace is equal to the size of any

basis for the vector space.
As you’d expect, R™ has dimension n. For example, R? has dimension 3 because any

basis for R3 such as

1 0 1 1 2 3
{51, 52, 53} and 0 s 1 s 1 and 0 s —2 s -2
0 0 1 -3 1 5

contains exactly three vectors. O



Subspace Basis and Dimension (EV6)

Activity 2.6.10 Consider the following subspace W of R*:

1 —9 ~3 12
0 0 1 —3

W = span o '] o || =5]"1] 15
~1 9 5 ~18

(a) Explain and demonstrate how to find a basis of W.

(b) Explain and demonstrate how to find the dimension of W.
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Activity 2.6.11 The dimension of a subspace may be found by doing what with an appro-
priate RREF matrix?

A. Count the rows.
B. Count the non-pivot columns.
C. Count the pivots.

D. Add the number of pivot rows and pivot columns.
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Activity 2.6.12 In Observation 2.6.5, we found a basis for the subspace

1 2 0 1
W = span 20,141, —21,]|2
3 6 -2 1

To do so, we use the results of the calculation:

12 0 1 2 0 1
RREF |2 4 -2 2 |=|0 0 [1] 1
36 -2 1 0O 0 0 0
1 0 ]
to conclude that the set 21, =2 , the set of vectors corresponding to the pivot
3 —2
columns of the RREF, is a basis for W.
[ 1 0
(a) Explain why neither of the vectors | 0 |, | 1 | are elements of W.
0 0

(b) Explain why this shows that, in general, when we calculate a basis for W

span{dy, ..., T, }, the pivot columns of RREF[# ... 7,] themselves do not form a basis

for W.



Homogeneous Linear Systems (EVT)

2.7 Homogeneous Linear Systems (EVT)

Learning Outcomes

» Find a basis for the solution set of a homogeneous system of equations.



Homogeneous Linear Systems (EVT)

Remark 2.7.1 Recall from Section 2.3 that a homogeneous system of linear equations is
one of the form:

1121+ aipeTo+ ...+ a1,T, = 0

a21T1 + Qoo+ ...+ Aoy, = 0

A1 L1+ Qoo + ...+ Ay, =0
This system is equivalent to the vector equation:
x1771+---+xn17n:6
and the augmented matrix:

apn a2 -+ Qi |0
a1 Ay -+ Ggp | O

Am1 Am2 ' Qmp 0



Homogeneous Linear Systems (EVT)
Activity 2.7.2 In Section 2.3, we observed that if
x1271—|—~--—|—a7n17n:6
is a homogenous vector equation, then:
e The zero vector 0 is a solution;
o The sum of any two solutions is again a solution;
o Multiplying a solution by a scalar produces another solution.

Based on this recollection, which of the following best describes the solution set to the
homogenous equation?

A. A basis for R™.
B. A subspace of R™.
C. All of R™.

D. The empty set.



Activity 2.7.3 Consider the homogeneous system of equations

Homogeneous Linear Systems (EVT)

T1 + 2T

201 +4x9 —x3 — 214

3%14‘6372-373- Ty =

(a) Find its solution set (a subspace of R*).

(b) Rewrite this solution space in the form

2
2
2

.")

+b

(c) Rewrite this solution space in the form

(d) Which of these choices best describes the set of two vectors

span

this span?

A.

The set is linearly dependent.

B. The set is linearly independent.
C.
D

. The set fails to span the solution space.

The set spans all of R*.

9

+ x4

a,belR

used in
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Fact 2.7.4 The coefficients of the free variables in the solution space of a linear system
always yield linearly independent vectors that span the solution space.
Thus if

-2 —1 -2 -1

1 0 1
al , +b 4 a,b e R » = span o || 4
0 1 0

is the solution space for a homogeneous system, then

is a basis for the solution space.
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Activity 2.7.5 Consider the homogeneous system of equations

2?[71 + 41’2 + 21’3 - 41‘4 =0
—2([51 — 4:62 + X3+ 24 =0
3x1+6x9 — x3—4x4 =0

Find a basis for its solution space.
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Activity 2.